These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28842779)

  • 1. Polymer-based interconnection cables to integrate with flexible penetrating microelectrode arrays.
    Oh K; Byun D; Kim S
    Biomed Microdevices; 2017 Aug; 19(4):76. PubMed ID: 28842779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Intrafascicular Neural Interface With Enhanced Interconnection for Recording of Peripheral Nerve Signals.
    Kang YN; Chou N; Jang JW; Byun D; Kang H; Moon DJ; Kim J; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1312-1319. PubMed ID: 31135364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array.
    Byun D; Cho SJ; Lee BH; Min J; Lee JH; Kim S
    J Neural Eng; 2017 Aug; 14(4):046023. PubMed ID: 28612758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an intrafascicular neural interface for peripheral nerve implantation.
    Chou N; Kang Y; Kang HS; Yun JD; Chun W; Lee KJ; Moon H; Choi IK; Byun D; Song I; Moon DJ; Moon JH; Lee BH; Kim J; You SK; Kim S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():847-850. PubMed ID: 28813926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording.
    Kisban S; Herwik S; Seidl K; Rubehn B; Jezzini A; Umiltà MA; Fogassi L; Stieglitz T; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():175-8. PubMed ID: 18001917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.
    Jeong J; Chou N; Kim S
    Biomed Microdevices; 2016 Jun; 18(3):42. PubMed ID: 27165102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.
    Kuo JT; Kim BJ; Hara SA; Lee CD; Gutierrez CA; Hoang TQ; Meng E
    Lab Chip; 2013 Feb; 13(4):554-61. PubMed ID: 23160191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery.
    Kang YN; Chou N; Jang JW; Choe HK; Kim S
    Microsyst Nanoeng; 2021; 7():66. PubMed ID: 34567778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation.
    Xie X; Rieth L; Williams L; Negi S; Bhandari R; Caldwell R; Sharma R; Tathireddy P; Solzbacher F
    J Neural Eng; 2014 Apr; 11(2):026016. PubMed ID: 24658358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation of an integrated neural interface device with Parylene C.
    Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.
    Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM
    Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon ribbon cables for chronically implantable microelectrode arrays.
    Hetke JF; Lund JL; Najafi K; Wise KD; Anderson DJ
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):314-21. PubMed ID: 8063297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-implantation electrochemical characterization of a Parylene C sheath microelectrode array probe.
    Hara SA; Kim BJ; Kuo JT; Lee C; Gutierrez CA; Hoang T; Meng E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5126-9. PubMed ID: 23367082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term
    Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067
    [No Abstract]   [Full Text] [Related]  

  • 19. 3D Parylene sheath neural probe for chronic recordings.
    Kim BJ; Kuo JT; Hara SA; Lee CD; Yu L; Gutierrez CA; Hoang TQ; Pikov V; Meng E
    J Neural Eng; 2013 Aug; 10(4):045002. PubMed ID: 23723130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.