These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28842834)

  • 21. Involuntary cueing effects on accuracy measures: Stimulus and task dependence.
    Kerzel D; Zarian L; Souto D
    J Vis; 2009 Oct; 9(11):16.1-16. PubMed ID: 20053079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A demonstration of direct access to colored stimuli following cueing by color.
    Navon D; Kasten R
    Acta Psychol (Amst); 2011 Sep; 138(1):30-8. PubMed ID: 21621179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.
    Feldmann-Wüstefeld T; Schubö A
    Vision Res; 2014 Apr; 97():108-16. PubMed ID: 24603347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Object-based selection is contingent on attentional control settings.
    Taylor JE; Rajsic J; Pratt J
    Atten Percept Psychophys; 2016 May; 78(4):988-95. PubMed ID: 26902247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention to baseline: does orienting visuospatial attention really facilitate target detection?
    Albares M; Criaud M; Wardak C; Nguyen SC; Ben Hamed S; Boulinguez P
    J Neurophysiol; 2011 Aug; 106(2):809-16. PubMed ID: 21613585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional effects on sensory tuning for single-feature detection and double-feature conjunction.
    Neri P
    Vision Res; 2004 Dec; 44(26):3053-64. PubMed ID: 15474578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between stimulus-driven orienting and top-down modulation in attentional capture.
    Liao HI; Yeh SL
    Acta Psychol (Amst); 2011 Sep; 138(1):52-9. PubMed ID: 21645875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Object-based attention generalizes to multisurface objects.
    Erlikhman G; Lytchenko T; Heller NH; Maechler MR; Caplovitz GP
    Atten Percept Psychophys; 2020 May; 82(4):1599-1612. PubMed ID: 31919757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatio-temporal dynamics of top-down control: directing attention to location and/or color as revealed by ERPs and source modeling.
    Slagter HA; Kok A; Mol N; Kenemans JL
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):333-48. PubMed ID: 15722205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting.
    Muller HJ; Reimann B; Krummenacher J
    J Exp Psychol Hum Percept Perform; 2003 Oct; 29(5):1021-35. PubMed ID: 14585020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial distribution of attentional bias in visuo-spatial working memory following multiple cues.
    Botta F; Lupiáñez J
    Acta Psychol (Amst); 2014 Jul; 150():1-13. PubMed ID: 24793127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changing similarity: Stable and flexible modulations of psychological dimensions.
    Dieciuc M; Roque NA; Folstein JR
    Brain Res; 2017 Sep; 1670():208-219. PubMed ID: 28669719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cueing effects of target location probability and repetition.
    Kabata T; Matsumoto E
    Vision Res; 2012 Nov; 73():23-9. PubMed ID: 23022549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature-based attention enhances performance by increasing response gain.
    Herrmann K; Heeger DJ; Carrasco M
    Vision Res; 2012 Dec; 74():10-20. PubMed ID: 22580017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal attention boosts perceptual effects of spatial attention and feature-based attention.
    Seibold VC; Stepper MY; Rolke B
    Brain Cogn; 2020 Jul; 142():105570. PubMed ID: 32447188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cued recognition task: dissociating the abrupt onset effect from the social and arrow cueing effect.
    Xu B; Tanaka JW
    Atten Percept Psychophys; 2015 Jan; 77(1):97-110. PubMed ID: 25190323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.