These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 28842906)

  • 1. Application of Split-GFP Reassembly Assay to Study Myogenesis and Myofusion In Vitro.
    Kodaka M; Xu X; Yang Z; Maruyama J; Hata Y
    Methods Mol Biol; 2017; 1668():127-134. PubMed ID: 28842906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells.
    Kodaka M; Yang Z; Nakagawa K; Maruyama J; Xu X; Sarkar A; Ichimura A; Nasu Y; Ozawa T; Iwasa H; Ishigami-Yuasa M; Ito S; Kagechika H; Hata Y
    Exp Cell Res; 2015 Aug; 336(2):171-81. PubMed ID: 26116467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Taxilin participates in differentiation of C2C12 myoblasts into myotubes.
    Sakane H; Makiyama T; Nogami S; Horii Y; Akasaki K; Shirataki H
    Exp Cell Res; 2016 Jul; 345(2):230-8. PubMed ID: 27231216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay.
    Müller C; Igwe CL; Wiechert W; Oldiges M
    Microb Cell Fact; 2021 Sep; 20(1):191. PubMed ID: 34592997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development.
    Guerrero L; Villar P; Martínez L; Badia-Careaga C; Arredondo JJ; Cervera M
    Genesis; 2014 Sep; 52(9):793-808. PubMed ID: 24895317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants.
    Xie W; Nielsen ME; Pedersen C; Thordal-Christensen H
    PLoS One; 2017; 12(1):e0170118. PubMed ID: 28085941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Protein-Protein Interaction Assays Using Tripartite Split-GFP Complementation.
    Pedelacq JD; Waldo GS; Cabantous S
    Methods Mol Biol; 2019; 2025():423-437. PubMed ID: 31267465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Organization of the Poxvirus Multicomponent Entry-Fusion Complex from Proximity Analyses in Living Infected Cells.
    Schin AM; Diesterbeck US; Moss B
    J Virol; 2021 Jul; 95(16):e0085221. PubMed ID: 34076488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells.
    Shi D; Reinecke H; Murry CE; Torok-Storb B
    Blood; 2004 Jul; 104(1):290-4. PubMed ID: 15010375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green fluorescent protein incorporation by mouse myoblasts may yield false evidence of myogenic differentiation of human haematopoietic stem cells.
    Di Castro A; Bonci D; Musumeci M; Grassi F
    Acta Physiol (Oxf); 2008 Jul; 193(3):249-56. PubMed ID: 18284377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System.
    Massemin A; Cabantous S; Waldo GS; Pedelacq JD
    Methods Mol Biol; 2019; 2025():321-333. PubMed ID: 31267460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Proximity Biotinylation Assay Based on the Self-Associating Split GFP1-10/11.
    Kesari AS; Aryal UK; LaCount DJ
    Proteomes; 2020 Dec; 8(4):. PubMed ID: 33276494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin adaptor GGA1 modulates myogenesis of C2C12 myoblasts.
    Isobe M; Lee S; Waguri S; Kametaka S
    PLoS One; 2018; 13(11):e0207533. PubMed ID: 30440034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion.
    Jiang C; Wang JH; Yue F; Kuang S
    Dev Biol; 2016 Jan; 409(1):16-25. PubMed ID: 26586200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells.
    Miyake M; Hayashi S; Iwasaki S; Uchida T; Watanabe K; Ohwada S; Aso H; Yamaguchi T
    J Cell Physiol; 2011 Apr; 226(4):1128-36. PubMed ID: 20945337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of muscle formation by the fusogenic micropeptide myomixer.
    Bi P; Ramirez-Martinez A; Li H; Cannavino J; McAnally JR; Shelton JM; Sánchez-Ortiz E; Bassel-Duby R; Olson EN
    Science; 2017 Apr; 356(6335):323-327. PubMed ID: 28386024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for fusion between cardiac and skeletal muscle cells.
    Reinecke H; Minami E; Poppa V; Murry CE
    Circ Res; 2004 Apr; 94(6):e56-60. PubMed ID: 15001531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal expression of connexin 39 and -43 during myoblast differentiation in cultured cells and in the mouse embryo.
    von Maltzahn J; Wulf V; Willecke K
    Cell Commun Adhes; 2006; 13(1-2):55-60. PubMed ID: 16613780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoglycin inhibition by microRNA miR-155 impairs myogenesis.
    Freire PP; Cury SS; de Oliveira G; Fernandez GJ; Moraes LN; da Silva Duran BO; Ferreira JH; Fuziwara CS; Kimura ET; Dal-Pai-Silva M; Carvalho RF
    PLoS One; 2017; 12(11):e0188464. PubMed ID: 29161332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.