These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 28842938)

  • 1. One-Step Reforming of CO
    Wang L; Yi Y; Wu C; Guo H; Tu X
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13679-13683. PubMed ID: 28842938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-thermal plasma-catalytic processes for CO
    Mukhtar A; Saqib S; Mohotti D; Ndeddy Aka RJ; Hossain M; Agyekum-Oduro E; Wu S
    Environ Sci Pollut Res Int; 2024 Aug; ():. PubMed ID: 39179888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels.
    Puliyalil H; Lašič Jurković D; Dasireddy VDBC; Likozar B
    RSC Adv; 2018 Jul; 8(48):27481-27508. PubMed ID: 35539992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy.
    Martín-Espejo JL; Gandara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L
    Sci Total Environ; 2022 Sep; 840():156663. PubMed ID: 35710010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating photo-thermal CO
    Lorber K; Djinović P
    iScience; 2022 Apr; 25(4):104107. PubMed ID: 35378856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts.
    Shan J; Li M; Allard LF; Lee S; Flytzani-Stephanopoulos M
    Nature; 2017 Nov; 551(7682):605-608. PubMed ID: 29189776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion mechanism of thermal plasma-enhanced CH
    Zhou Y; Chu R; Fan L; Zhao J; Li W; Jiang X; Meng X; Li Y; Yu S; Wan Y
    Sci Total Environ; 2023 Mar; 866():161453. PubMed ID: 36626987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.
    Wang Y; Sun J; Tsubaki N
    Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature.
    Shen Y; Yang Z; Tang X; Zhang J; Lv G
    ChemSusChem; 2024 Jun; 17(12):e202301532. PubMed ID: 38321849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocatalytic Synthesis of Acetic Acid from CH
    Mu BS; Zhang Y; Peng M; Tu Z; Guo Z; Shen S; Xu Y; Liang W; Wang X; Wang M; Ma D; Liu Z
    Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202407443. PubMed ID: 39058370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous production of syngas and carbon nanotubes from CO
    Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO
    Velty A; Corma A
    Chem Soc Rev; 2023 Mar; 52(5):1773-1946. PubMed ID: 36786224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step direct conversion of methane to methanol with water in non-thermal plasma.
    Bi W; Tang Y; Li X; Dai C; Song C; Guo X; Ma X
    Commun Chem; 2022 Oct; 5(1):124. PubMed ID: 36698023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor.
    Michalsky R; Neuhaus D; Steinfeld A
    Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.