These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28843168)

  • 1. Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate.
    Zhang M; Yang C; Zhao M; Yu L; Yang K; Zhu X; Jiang X
    J Hazard Mater; 2018 Jan; 342():242-251. PubMed ID: 28843168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes.
    Zhang M; Yang C; Zhao M; Yang K; Shen R; Zheng Y
    J Hazard Mater; 2017 Jan; 321():281-289. PubMed ID: 27637094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures.
    Bakhshi N; Sarrafi A; Ramezanianpour AA
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20829-20838. PubMed ID: 31111389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices.
    Shi HS; Kan LL
    J Hazard Mater; 2009 Mar; 162(2-3):913-9. PubMed ID: 18602213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications.
    Reyes IA; Mireles I; Patiño F; Pandiyan T; Flores MU; Palacios EG; Gutiérrez EJ; Reyes M
    Geochem Trans; 2016; 17():3. PubMed ID: 27303211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First insights of Cr speciation in leached Portland cement using X-ray spectromicroscopy.
    Rose J; Bénard A; Susini J; Borschneck D; Hazemann JL; Cheylan P; Vichot A; Bottero JY
    Environ Sci Technol; 2003 Nov; 37(21):4864-70. PubMed ID: 14620811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC; Wazne M; Moon DH
    Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization/solidification on chromium (III) wastes by C(3)A and C(3)A hydrated matrix.
    Li X; He C; Bai Y; Ma B; Wang G; Tan H
    J Hazard Mater; 2014 Mar; 268():61-7. PubMed ID: 24468527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of Zn, Ni, Cu, SO4(2-) and CrO4(2-) as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge.
    Karamalidis AK; Voudrias EA
    J Hazard Mater; 2007 Mar; 141(3):591-606. PubMed ID: 16978764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Hexavalent Chromium in Portland Cement Using Ground Granulated Blast-Furnace Slag Powder.
    Bae S; Hikaru F; Kanematsu M; Yoshizawa C; Noguchi T; Yu Y; Ha J
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29271919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.
    Camilleri J; Cutajar A; Mallia B
    Dent Mater; 2011 Aug; 27(8):845-54. PubMed ID: 21571360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The toxicity of HCrO
    Song N; Ma Y
    Chemosphere; 2017 Mar; 171():537-543. PubMed ID: 28039832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Alkali on Water Soluble Hexavalent Chromium in Ordinary Portland Cement.
    Shi F; Jiang D; Ji J; Yan J; Chen H
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species.
    Liu W; Zheng J; Ou X; Liu X; Song Y; Tian C; Rong W; Shi Z; Dang Z; Lin Z
    Environ Sci Technol; 2018 Nov; 52(22):13336-13342. PubMed ID: 30353724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation mechanisms for contaminants on weak-base hybrid ion exchange resins.
    Saslow SA; Cordova EA; Escobedo NM; Qafoku O; Bowden ME; Resch CT; Lahiri N; Nienhuis ET; Boglaienko D; Levitskaia TG; Meyers P; Hager JR; Emerson HP; Pearce CI; Freedman VL
    J Hazard Mater; 2023 Oct; 459():132165. PubMed ID: 37531768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic evaluation of U
    Yorkshire AS; Stennett MC; Walkley B; O'Sullivan SE; Mottram LM; Bailey DJ; Provis JL; Hyatt NC; Corkhill CL
    J Synchrotron Radiat; 2022 Jan; 29(Pt 1):89-102. PubMed ID: 34985426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching mechanisms of Cr(VI) from chromite ore processing residue.
    Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A
    J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt.
    Dai Y; Qian G; Cao Y; Chi Y; Xu Y; Zhou J; Liu Q; Xu ZP; Qiao S
    J Hazard Mater; 2009 Oct; 170(2-3):1086-92. PubMed ID: 19540046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of EAF dust in cement composites: assessment of environmental impact.
    Sturm T; Milacic R; Murko S; Vahcic M; Mladenovic A; Suput JS; Scancar J
    J Hazard Mater; 2009 Jul; 166(1):277-83. PubMed ID: 19097693
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Mazur A; Tolstoy P; Sotiriadis K
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.