These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28843204)
1. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Oliveira IB; Groh KJ; Schönenberger R; Barroso C; Thomas KV; Suter MJ Aquat Toxicol; 2017 Oct; 191():164-174. PubMed ID: 28843204 [TBL] [Abstract][Full Text] [Related]
2. Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates. Oliveira IB; Beiras R; Thomas KV; Suter MJ; Barroso CM Ecotoxicology; 2014 Sep; 23(7):1336-44. PubMed ID: 24994544 [TBL] [Abstract][Full Text] [Related]
3. Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Okamura H; Kitano S; Toyota S; Harino H; Thomas KV Chemosphere; 2009 Mar; 74(9):1275-8. PubMed ID: 19095285 [TBL] [Abstract][Full Text] [Related]
4. Tralopyril bioconcentration and effects on the gill proteome of the Mediterranean mussel Mytilus galloprovincialis. Oliveira IB; Groh KJ; Stadnicka-Michalak J; Schönenberger R; Beiras R; Barroso CM; Langford KH; Thomas KV; Suter MJ Aquat Toxicol; 2016 Aug; 177():198-210. PubMed ID: 27295630 [TBL] [Abstract][Full Text] [Related]
5. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Martins SE; Fillmann G; Lillicrap A; Thomas KV Biofouling; 2018 Jan; 34(1):34-52. PubMed ID: 29250978 [TBL] [Abstract][Full Text] [Related]
6. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L. Wendt I; Arrhenius Å; Backhaus T; Hilvarsson A; Holm K; Langford K; Tunovic T; Blanck H Bull Environ Contam Toxicol; 2013 Oct; 91(4):426-32. PubMed ID: 23846394 [TBL] [Abstract][Full Text] [Related]
7. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Wendt I; Backhaus T; Blanck H; Arrhenius Å Ecotoxicology; 2016 Jul; 25(5):871-9. PubMed ID: 26984312 [TBL] [Abstract][Full Text] [Related]
8. From sub cellular to community level: toxicity of glutaraldehyde to several aquatic organisms. Pereira SP; Oliveira R; Coelho S; Musso C; Soares AM; Domingues I; Nogueira AJ Sci Total Environ; 2014 Feb; 470-471():147-58. PubMed ID: 24131562 [TBL] [Abstract][Full Text] [Related]
9. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE Aquat Toxicol; 2017 Aug; 189():50-59. PubMed ID: 28582701 [TBL] [Abstract][Full Text] [Related]
10. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Coelho S; Oliveira R; Pereira S; Musso C; Domingues I; Bhujel RC; Soares AM; Nogueira AJ Aquat Toxicol; 2011 Jun; 103(3-4):191-8. PubMed ID: 21473847 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Chae Y; An YJ Aquat Toxicol; 2016 Apr; 173():94-104. PubMed ID: 26854872 [TBL] [Abstract][Full Text] [Related]
12. The environmental fate and effects of antifouling paint biocides. Thomas KV; Brooks S Biofouling; 2010 Jan; 26(1):73-88. PubMed ID: 20390558 [TBL] [Abstract][Full Text] [Related]
13. QSAR models for biocides: The example of the prediction of Marzo M; Lavado GJ; Como F; Toropova AP; Toropov AA; Baderna D; Cappelli C; Lombardo A; Toma C; Blázquez M; Benfenati E SAR QSAR Environ Res; 2020 Mar; 31(3):227-243. PubMed ID: 31941347 [TBL] [Abstract][Full Text] [Related]
14. Four selected high molecular weight heterocyclic aromatic hydrocarbons: Ecotoxicological hazard assessment, environmental relevance and regulatory needs under REACH. Brendel S; Polleichtner C; Behnke A; Jessel S; Hassold E; Jennemann C; Einhenkel-Arle D; Seidel A Ecotoxicol Environ Saf; 2018 Nov; 163():340-348. PubMed ID: 30059878 [TBL] [Abstract][Full Text] [Related]
15. Mixture toxicity of five biocides with dissimilar modes of action on the growth and photosystem II efficiency of Chlamydomonas reinhardtii. de Almeida ACG; Petersen K; Langford K; Thomas KV; Tollefsen KE J Toxicol Environ Health A; 2017; 80(16-18):971-986. PubMed ID: 28850005 [TBL] [Abstract][Full Text] [Related]
16. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Amara I; Miled W; Slama RB; Ladhari N Environ Toxicol Pharmacol; 2018 Jan; 57():115-130. PubMed ID: 29258017 [TBL] [Abstract][Full Text] [Related]
17. Lethal and sub lethal effects of the biocide chlorhexidine on aquatic organisms. Jesus FT; Oliveira R; Silva A; Catarino AL; Soares AM; Nogueira AJ; Domingues I Ecotoxicology; 2013 Nov; 22(9):1348-58. PubMed ID: 24026526 [TBL] [Abstract][Full Text] [Related]
18. Tralopyril induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. Chen X; Teng M; Zhang J; Qian L; Duan M; Cheng Y; Zhao F; Zheng J; Wang C Sci Total Environ; 2020 Dec; 746():141860. PubMed ID: 33027873 [TBL] [Abstract][Full Text] [Related]
19. Degradation of triphenylborane-pyridine antifouling agent in water by copper ions. Tsuboi A; Okamura H; Kaewchuay N; Fukushi K; Zhou X; Nishida T Environ Technol; 2013; 34(17-20):2835-40. PubMed ID: 24527648 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus. Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]