BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28843435)

  • 1. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission.
    Bournique E; Dall'Osto M; Hoffmann JS; Bergoglio V
    Mutat Res; 2018 Mar; 808():62-73. PubMed ID: 28843435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress.
    Tsao WC; Eckert KA
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication fork dynamics and the DNA damage response.
    Jones RM; Petermann E
    Biochem J; 2012 Apr; 443(1):13-26. PubMed ID: 22417748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TopBP1-mediated DNA processing during mitosis.
    Gallina I; Christiansen SK; Pedersen RT; Lisby M; Oestergaard VH
    Cell Cycle; 2016; 15(2):176-83. PubMed ID: 26701150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translesion Synthesis or Repair by Specialized DNA Polymerases Limits Excessive Genomic Instability upon Replication Stress.
    Maiorano D; El Etri J; Franchet C; Hoffmann JS
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer.
    Hoffmann JS; Cazaux C
    Semin Cancer Biol; 2010 Oct; 20(5):312-9. PubMed ID: 20934518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites.
    Twayana S; Bacolla A; Barreto-Galvez A; De-Paula RB; Drosopoulos WC; Kosiyatrakul ST; Bouhassira EE; Tainer JA; Madireddy A; Schildkraut CL
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translesion synthesis DNA polymerases and control of genome stability.
    Shcherbakova PV; Fijalkowska IJ
    Front Biosci; 2006 Sep; 11():2496-517. PubMed ID: 16720328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Eukaryotic error prone DNA polymerases: suggested roles in replication, repair and mutagenesis].
    Krutiakov VM
    Mol Biol (Mosk); 2006; 40(1):3-11. PubMed ID: 16523685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication.
    Sekimoto T; Oda T; Kurashima K; Hanaoka F; Yamashita T
    Mol Cell Biol; 2015 Feb; 35(4):699-715. PubMed ID: 25487575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of dealing with DNA damage-induced replication problems.
    Budzowska M; Kanaar R
    Cell Biochem Biophys; 2009; 53(1):17-31. PubMed ID: 19034694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of eukaryotic DNA polymerases.
    Shcherbakova PV; Bebenek K; Kunkel TA
    Sci Aging Knowledge Environ; 2003 Feb; 2003(8):RE3. PubMed ID: 12844548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesion Bypass and the Reactivation of Stalled Replication Forks.
    Marians KJ
    Annu Rev Biochem; 2018 Jun; 87():217-238. PubMed ID: 29298091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the architecture and abundance of replication intermediates delineate the chronology of DNA damage tolerance pathways at UV-stalled replication forks in human cells.
    Benureau Y; Pouvelle C; Dupaigne P; Baconnais S; Moreira Tavares E; Mazón G; Despras E; Le Cam E; Kannouche PL
    Nucleic Acids Res; 2022 Sep; 50(17):9909-9929. PubMed ID: 36107774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Heritability of Replication Problems.
    Hoffmann JS
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity.
    Boyer AS; Grgurevic S; Cazaux C; Hoffmann JS
    J Mol Biol; 2013 Nov; 425(23):4767-81. PubMed ID: 24095858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bumps in the road: how replicative DNA polymerases see DNA damage.
    Hogg M; Wallace SS; Doublié S
    Curr Opin Struct Biol; 2005 Feb; 15(1):86-93. PubMed ID: 15718138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.