These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 28843440)
21. N-cadherin mediates nitric oxide-induced neurogenesis in young and retired breeder neurospheres. Chen J; Zacharek A; Li Y; Li A; Wang L; Katakowski M; Roberts C; Lu M; Chopp M Neuroscience; 2006 Jun; 140(2):377-88. PubMed ID: 16580782 [TBL] [Abstract][Full Text] [Related]
22. Physical stimulation and scaffold composition efficiently support osteogenic differentiation of mesenchymal stem cells. Heydari Asl S; Hosseinpoor H; Parivar K; Hayati Roodbari N; Hanaee-Ahvaz H Tissue Cell; 2018 Feb; 50():1-7. PubMed ID: 29429509 [TBL] [Abstract][Full Text] [Related]
23. Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70. Zhao Y; Xin J; Sun C; Zhao B; Zhao J; Su L Gene; 2012 Nov; 509(1):85-92. PubMed ID: 22921323 [TBL] [Abstract][Full Text] [Related]
24. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Jeong SG; Ohn T; Kim SH; Cho GW Neurosci Lett; 2013 Oct; 554():22-7. PubMed ID: 24021810 [TBL] [Abstract][Full Text] [Related]
25. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells. Choi YK; Urnukhsaikhan E; Yoon HH; Seo YK; Cho H; Jeong JS; Kim SC; Park JK Biotechnol Prog; 2017 Jan; 33(1):201-211. PubMed ID: 27790871 [TBL] [Abstract][Full Text] [Related]
26. Extremely low-frequency electromagnetic field promotes astrocytic differentiation of human bone marrow mesenchymal stem cells by modulating SIRT1 expression. Jeong WY; Kim JB; Kim HJ; Kim CW Biosci Biotechnol Biochem; 2017 Jul; 81(7):1356-1362. PubMed ID: 28351214 [TBL] [Abstract][Full Text] [Related]
27. PDE4 Inhibition by Rolipram Promotes Neuronal Differentiation in Human Bone Marrow Mesenchymal Stem Cells. Joe IS; Cho GW Cell Reprogram; 2016 Aug; 18(4):224-9. PubMed ID: 27459581 [TBL] [Abstract][Full Text] [Related]
28. The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Song MY; Yu JZ; Zhao DM; Wei S; Liu Y; Hu YM; Zhao WC; Yang Y; Wu H Cell Biochem Biophys; 2014 May; 69(1):47-54. PubMed ID: 24068522 [TBL] [Abstract][Full Text] [Related]
30. [Effects of different frequency electromagnetic fields on the differentiation of midbrain neural stem cells]. Li Y; Zhao L; Xing X; Lou SJ; He C; Lu CL Space Med Med Eng (Beijing); 2002 Oct; 15(5):374-6. PubMed ID: 12449147 [TBL] [Abstract][Full Text] [Related]
31. Non-Ionizing Radiation for Cardiac Human Amniotic Mesenchymal Stromal Cell Commitment: A Physical Strategy in Regenerative Medicine. Ledda M; D'Emilia E; Lolli MG; Marchese R; De Lazzari C; Lisi A Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30096780 [TBL] [Abstract][Full Text] [Related]
32. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Kim MO; Jung H; Kim SC; Park JK; Seo YK Int J Mol Med; 2015 Jan; 35(1):153-60. PubMed ID: 25352086 [TBL] [Abstract][Full Text] [Related]
33. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Yang Y; Tao C; Zhao D; Li F; Zhao W; Wu H Bioelectromagnetics; 2010 May; 31(4):277-85. PubMed ID: 20041434 [TBL] [Abstract][Full Text] [Related]
34. Selection of suitable reference genes for reverse transcription-quantitative polymerase chain reaction analysis of neuronal cells differentiated from bone mesenchymal stem cells. He YX; Zhang Y; Yang Q; Wang C; Su G Mol Med Rep; 2015 Aug; 12(2):2291-300. PubMed ID: 25936423 [TBL] [Abstract][Full Text] [Related]
35. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Cheng Y; Dai Y; Zhu X; Xu H; Cai P; Xia R; Mao L; Zhao BQ; Fan W Neuroreport; 2015 Oct; 26(15):896-902. PubMed ID: 26339991 [TBL] [Abstract][Full Text] [Related]
36. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Alexanian AR; Liu QS; Zhang Z Int J Biochem Cell Biol; 2013 Aug; 45(8):1633-8. PubMed ID: 23665234 [TBL] [Abstract][Full Text] [Related]
37. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
38. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Ross CL; Siriwardane M; Almeida-Porada G; Porada CD; Brink P; Christ GJ; Harrison BS Stem Cell Res; 2015 Jul; 15(1):96-108. PubMed ID: 26042793 [TBL] [Abstract][Full Text] [Related]
39. [Study on the differentiation of marrow stromal stem cells into neural cells in vitro]. Zhuo B; Jiang H; Qu P Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 May; 19(5):373-6. PubMed ID: 15960442 [TBL] [Abstract][Full Text] [Related]
40. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Choi YK; Lee DH; Seo YK; Jung H; Park JK; Cho H Appl Biochem Biotechnol; 2014 Oct; 174(4):1233-1245. PubMed ID: 25099373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]