These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28843732)

  • 1. Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering.
    Guo J; Li C; Ling S; Huang W; Chen Y; Kaplan DL
    Biomaterials; 2017 Nov; 145():44-55. PubMed ID: 28843732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.
    Yang M; Shuai Y; Zhang C; Chen Y; Zhu L; Mao C; OuYang H
    Biomacromolecules; 2014 Apr; 15(4):1185-93. PubMed ID: 24666022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.
    Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W
    Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering.
    Wang X; Wenk E; Zhang X; Meinel L; Vunjak-Novakovic G; Kaplan DL
    J Control Release; 2009 Mar; 134(2):81-90. PubMed ID: 19071168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro.
    Klimek K; Benko A; Vandrovcova M; Travnickova M; Douglas TEL; Tarczynska M; Broz A; Gaweda K; Ginalska G; Bacakova L
    Biomater Adv; 2022 Apr; 135():212724. PubMed ID: 35929204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds.
    Meinel AJ; Kubow KE; Klotzsch E; Garcia-Fuentes M; Smith ML; Vogel V; Merkle HP; Meinel L
    Biomaterials; 2009 Jun; 30(17):3058-67. PubMed ID: 19233463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk fibroin as biomaterial for bone tissue engineering.
    Melke J; Midha S; Ghosh S; Ito K; Hofmann S
    Acta Biomater; 2016 Feb; 31():1-16. PubMed ID: 26360593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration.
    Zhang N; Wang Y; Zhang J; Guo J; He J
    Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices.
    Kundu J; Dewan M; Ghoshal S; Kundu SC
    J Mater Sci Mater Med; 2008 Jul; 19(7):2679-89. PubMed ID: 18283532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun silk biomaterial scaffolds for regenerative medicine.
    Zhang X; Reagan MR; Kaplan DL
    Adv Drug Deliv Rev; 2009 Oct; 61(12):988-1006. PubMed ID: 19643154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering.
    Li C; Ouyang L; Pence IJ; Moore AC; Lin Y; Winter CW; Armstrong JPK; Stevens MM
    Adv Mater; 2019 Apr; 31(17):e1900291. PubMed ID: 30844123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Mineralization Promotes Viability and Differentiation of Human Mesenchymal Stem Cells in a Perfusion Bioreactor.
    Ramírez-Rodríguez GB; Pereira AR; Herrmann M; Hansmann J; Delgado-López JM; Sprio S; Tampieri A; Sandri M
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33535576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds.
    Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL
    J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts.
    Soffer L; Wang X; Zhang X; Kluge J; Dorfmann L; Kaplan DL; Leisk G
    J Biomater Sci Polym Ed; 2008; 19(5):653-64. PubMed ID: 18419943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics.
    Bojedla SSR; Chameettachal S; Yeleswarapu S; Nikzad M; Masood SH; Pati F
    J Biomed Mater Res A; 2022 Jul; 110(7):1386-1400. PubMed ID: 35261161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-strength silk protein scaffolds for bone repair.
    Mandal BB; Grinberg A; Gil ES; Panilaitis B; Kaplan DL
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7699-704. PubMed ID: 22552231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels.
    Neubauer VJ; Hüter F; Wittmann J; Trossmann VT; Kleinschrodt C; Alber-Laukant B; Rieg F; Scheibel T
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.
    Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z
    Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.
    Huang X; Bai S; Lu Q; Liu X; Liu S; Zhu H
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1402-14. PubMed ID: 25399838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.