These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 28843925)

  • 41. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.
    Zahmakıran M; Philippot K; Özkar S; Chaudret B
    Dalton Trans; 2012 Jan; 41(2):590-8. PubMed ID: 22052298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane.
    Duman S; Metin O; Ozkar S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ammonia borane dehydrogenation and selective hydrogenation of functionalized nitroarene over a porous nickel-cobalt bimetallic catalyst.
    Miao H; Ma K; Zhu H; Yin K; Zhang Y; Cui Y
    RSC Adv; 2019 May; 9(26):14580-14585. PubMed ID: 35516331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts.
    Robertson AP; Suter R; Chabanne L; Whittell GR; Manners I
    Inorg Chem; 2011 Dec; 50(24):12680-91. PubMed ID: 22103654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers.
    Yuan Y; Sun L; Wu G; Yuan Y; Zhan W; Wang X; Han X
    Inorg Chem; 2020 Feb; 59(3):2104-2110. PubMed ID: 31942798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.
    Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z
    Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Situ Confined Growth Based on a Self-Templating Reduction Strategy of Highly Dispersed Ni Nanoparticles in Hierarchical Yolk-Shell Fe@SiO
    Jiao J; Wang H; Guo W; Li R; Tian K; Xu Z; Jia Y; Wu Y; Cao L
    Chem Asian J; 2016 Dec; 11(24):3534-3540. PubMed ID: 27787941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking.
    Polanski J; Bartczak P; Ambrozkiewicz W; Sitko R; Siudyga T; Mianowski A; Szade J; Balin K; Lelątko J
    PLoS One; 2015; 10(8):e0136805. PubMed ID: 26308929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.
    Singh C; Goyal A; Singhal S
    Nanoscale; 2014 Jul; 6(14):7959-70. PubMed ID: 24902783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-Coated Magnetic Cobalt Ferrite Nanoparticles.
    Wang T; Jiang Z; An T; Li G; Zhao H; Wong PK
    Environ Sci Technol; 2018 Apr; 52(8):4774-4784. PubMed ID: 29578698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen.
    Wang Q; Xu C; Ming M; Yang Y; Xu B; Wang Y; Zhang Y; Wu J; Fan G
    Nanomaterials (Basel); 2018 Apr; 8(5):. PubMed ID: 29701660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.
    Peng CY; Kang L; Cao S; Chen Y; Lin ZS; Fu WF
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15725-9. PubMed ID: 26545954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Skeletal Ni Catalysts Prepared from Amorphous Ni-Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane.
    Nozaki A; Tanihara Y; Kuwahara Y; Ohmichi T; Mori K; Nagase T; Yasuda HY; Yamashita H
    Chemphyschem; 2016 Feb; 17(3):412-7. PubMed ID: 26663589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon Nanotubes as Support in the Platinum-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane.
    Chen W; Duan X; Qian G; Chen D; Zhou X
    ChemSusChem; 2015 Sep; 8(17):2927-31. PubMed ID: 26059799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core-Shell Nanoparticles.
    Yurderi M; Top T; Bulut A; Kanberoglu GS; Kaya M; Zahmakiran M
    Inorg Chem; 2020 Jul; 59(14):9728-9738. PubMed ID: 32589025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Palladium Decorated, Amine Functionalized Ni-, Cd- and Co-Ferrite Nanospheres as Novel and Effective Catalysts for 2,4-Dinitrotoluene Hydrogenation.
    Hajdu V; Sikora E; Kristály F; Muránszky G; Fiser B; Viskolcz B; Nagy M; Vanyorek L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature.
    Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F
    J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper-decorated core-shell structured ordered mesoporous containing cobalt ferrite nanoparticles as high-performance heterogeneous catalyst toward synthesis of tetrazole.
    Molaei S; Ghadermazi M
    Sci Rep; 2023 Sep; 13(1):15146. PubMed ID: 37704715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.