BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28844009)

  • 1. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord.
    Dyck J; Lanuza GM; Gosgnach S
    J Neurophysiol; 2012 Jun; 107(12):3256-66. PubMed ID: 22442567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.
    Rancic V; Ballanyi K; Gosgnach S
    J Neurosci; 2020 Dec; 40(50):9692-9700. PubMed ID: 33188068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using an upright preparation to identify and characterize locomotor related neurons across the transverse plane of the neonatal mouse spinal cord.
    Rancic V; Haque F; Ballanyi K; Gosgnach S
    J Neurosci Methods; 2019 Jul; 323():90-97. PubMed ID: 31132372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
    Lundfald L; Restrepo CE; Butt SJ; Peng CY; Droho S; Endo T; Zeilhofer HU; Sharma K; Kiehn O
    Eur J Neurosci; 2007 Dec; 26(11):2989-3002. PubMed ID: 18028107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.
    Wilson JM; Blagovechtchenski E; Brownstone RM
    J Neurosci; 2010 Jan; 30(3):1137-48. PubMed ID: 20089922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region.
    Noga BR; Fortier PA; Kriellaars DJ; Dai X; Detillieux GR; Jordan LM
    J Neurosci; 1995 Mar; 15(3 Pt 2):2203-17. PubMed ID: 7891162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat.
    Stokke MF; Nissen UV; Glover JC; Kiehn O
    J Comp Neurol; 2002 May; 446(4):349-59. PubMed ID: 11954034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord.
    Wu L; Sonner PM; Titus DJ; Wiesner EP; Alvarez FJ; Ziskind-Conhaim L
    J Neurosci; 2011 Mar; 31(13):4821-33. PubMed ID: 21451020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taking a Big Step towards Understanding Locomotion.
    Wyart C
    Trends Neurosci; 2018 Dec; 41(12):869-870. PubMed ID: 30471663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.