BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28844175)

  • 1. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat.
    Wen MH; Lee KZ
    J Neurotrauma; 2018 Feb; 35(3):533-547. PubMed ID: 28844175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury.
    Navarrete-Opazo A; Vinit S; Dougherty BJ; Mitchell GS
    Exp Neurol; 2015 Apr; 266():1-10. PubMed ID: 25687551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ipsilateral inspiratory intercostal muscle activity after C2 spinal cord hemisection in rats.
    Beth Zimmer M; Grant JS; Ayar AE; Goshgarian HG
    J Spinal Cord Med; 2015 Mar; 38(2):224-30. PubMed ID: 24969369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat.
    Lee KZ; Xu KJ
    J Neurotrauma; 2019 Feb; 36(3):448-459. PubMed ID: 29943656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rostral-Caudal Effect of Cervical Magnetic Stimulation on the Diaphragm Motor Evoked Potential after Cervical Spinal Cord Contusion in the Rat.
    Lee KZ; Liou LM; Vinit S; Ren MY
    J Neurotrauma; 2022 May; 39(9-10):683-700. PubMed ID: 34937419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    J Neurophysiol; 2017 Sep; 118(3):1732-1738. PubMed ID: 28659464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of inspiratory intercostal muscle activity following high cervical hemisection.
    Dougherty BJ; Lee KZ; Gonzalez-Rothi EJ; Lane MA; Reier PJ; Fuller DD
    Respir Physiol Neurobiol; 2012 Sep; 183(3):186-92. PubMed ID: 22705013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory Function of the Diaphragm after High Cervical Hemisection in the Rat.
    Lee KZ; Hsu SH
    J Neurotrauma; 2017 Sep; 34(18):2634-2644. PubMed ID: 28447895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ampakines increase diaphragm activation following mid-cervical contusion injury in rats.
    Rana S; Thakre PP; Fuller DD
    Exp Neurol; 2024 Jun; 376():114769. PubMed ID: 38582278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropathology of distinct diaphragm areas following mid-cervical spinal cord contusion in the rat.
    Lee KZ
    Spine J; 2022 Oct; 22(10):1726-1741. PubMed ID: 35680014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaphragm Motor-Evoked Potential Induced by Cervical Magnetic Stimulation following Cervical Spinal Cord Contusion in the Rat.
    Lee KZ; Liou LM; Vinit S
    J Neurotrauma; 2021 Aug; 38(15):2122-2140. PubMed ID: 33899506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat.
    Lee KZ; Vinit S
    Spine J; 2024 Feb; 24(2):352-372. PubMed ID: 37774983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function.
    Alvarez-Argote S; Gransee HM; Mora JC; Stowe JM; Jorgenson AJ; Sieck GC; Mantilla CB
    J Neurotrauma; 2016 Mar; 33(5):500-9. PubMed ID: 26413840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat.
    Lee KZ
    J Appl Physiol (1985); 2019 Jan; 126(1):111-123. PubMed ID: 30496708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat.
    Wen MH; Wu MJ; Vinit S; Lee KZ
    J Neurotrauma; 2019 Nov; 36(21):2991-3004. PubMed ID: 31099299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions.
    Awad BI; Warren PM; Steinmetz MP; Alilain WJ
    Exp Neurol; 2013 Oct; 248():398-405. PubMed ID: 23886671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion.
    Lee KZ; Chiang SC; Li YJ
    Neurorehabil Neural Repair; 2017 Apr; 31(4):364-375. PubMed ID: 28332435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury.
    Nicaise C; Hala TJ; Frank DM; Parker JL; Authelet M; Leroy K; Brion JP; Wright MC; Lepore AC
    Exp Neurol; 2012 Jun; 235(2):539-52. PubMed ID: 22465264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the extrinsic tongue muscle activity in response to bronchopulmonary C-fiber activation following midcervical contusion in the rat.
    Chang HS; Lee KZ
    J Appl Physiol (1985); 2020 May; 128(5):1130-1145. PubMed ID: 32163330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats.
    Navarrete-Opazo A; Mitchell GS
    J Appl Physiol (1985); 2014 Jul; 117(2):180-8. PubMed ID: 24833779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.