BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28844710)

  • 1. Induction of Plac8 promotes pro-survival function of autophagy in cadmium-induced prostate carcinogenesis.
    Kolluru V; Pal D; Papu John AMS; Ankem MK; Freedman JH; Damodaran C
    Cancer Lett; 2017 Nov; 408():121-129. PubMed ID: 28844710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of endoplasmic reticulum stress might be responsible for defective autophagy in cadmium-induced prostate carcinogenesis.
    Kolluru V; Tyagi A; Chandrasekaran B; Ankem M; Damodaran C
    Toxicol Appl Pharmacol; 2019 Jun; 373():62-68. PubMed ID: 31002860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of autophagy prevents cadmium-induced prostate carcinogenesis.
    Pal D; Suman S; Kolluru V; Sears S; Das TP; Alatassi H; Ankem MK; Freedman JH; Damodaran C
    Br J Cancer; 2017 Jun; 117(1):56-64. PubMed ID: 28588318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells.
    Benbrahim-Tallaa L; Liu J; Webber MM; Waalkes MP
    Prostate; 2007 Feb; 67(2):135-45. PubMed ID: 17075824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of apoptotic resistance in cadmium-transformed human prostate epithelial cells: Bcl-2 overexpression blocks the activation of JNK signal transduction pathway.
    Qu W; Ke H; Pi J; Broderick D; French JE; Webber MM; Waalkes MP
    Environ Health Perspect; 2007 Jul; 115(7):1094-100. PubMed ID: 17637928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells.
    Aimola P; Carmignani M; Volpe AR; Di Benedetto A; Claudio L; Waalkes MP; van Bokhoven A; Tokar EJ; Claudio PP
    PLoS One; 2012; 7(3):e33647. PubMed ID: 22448262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing KRAS Overexpression in Cadmium-Transformed Prostate Epithelial Cells Mitigates Malignant Phenotype.
    Ngalame NN; Waalkes MP; Tokar EJ
    Chem Res Toxicol; 2016 Sep; 29(9):1458-67. PubMed ID: 27510461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing KRAS overexpression in arsenic-transformed prostate epithelial and stem cells partially mitigates malignant phenotype.
    Ngalame NN; Tokar EJ; Person RJ; Waalkes MP
    Toxicol Sci; 2014 Dec; 142(2):489-96. PubMed ID: 25273566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.
    Son YO; Pratheeshkumar P; Roy RV; Hitron JA; Wang L; Zhang Z; Shi X
    J Biol Chem; 2014 Oct; 289(41):28660-75. PubMed ID: 25157103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells.
    Achanzar WE; Webber MM; Waalkes MP
    Prostate; 2002 Aug; 52(3):236-44. PubMed ID: 12111698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the PI3K/Akt pathway in cadmium induced malignant transformation of normal prostate epithelial cells.
    Kulkarni P; Dasgupta P; Bhat NS; Hashimoto Y; Saini S; Shahryari V; Yamamura S; Shiina M; Tanaka Y; Dahiya R; Majid S
    Toxicol Appl Pharmacol; 2020 Dec; 409():115308. PubMed ID: 33129824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular interplay between NOX1 and autophagy in cadmium-induced prostate carcinogenesis.
    Tyagi A; Chandrasekaran B; Navin AK; Shukla V; Baby BV; Ankem MK; Damodaran C
    Free Radic Biol Med; 2023 Apr; 199():44-55. PubMed ID: 36764624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation.
    Benbrahim-Tallaa L; Webber MM; Waalkes MP
    Environ Health Perspect; 2005 Sep; 113(9):1134-9. PubMed ID: 16140617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling of differentially expressed genes in cadmium-induced prostate carcinogenesis.
    Kolluru V; Tyagi A; Chandrasekaran B; Damodaran C
    Toxicol Appl Pharmacol; 2019 Jul; 375():57-63. PubMed ID: 31082426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic-specific stem cell selection during malignant transformation.
    Tokar EJ; Qu W; Liu J; Liu W; Webber MM; Phang JM; Waalkes MP
    J Natl Cancer Inst; 2010 May; 102(9):638-49. PubMed ID: 20339138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium-induced malignant transformation of human prostate epithelial cells.
    Achanzar WE; Diwan BA; Liu J; Quader ST; Webber MM; Waalkes MP
    Cancer Res; 2001 Jan; 61(2):455-8. PubMed ID: 11212230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells.
    Kundu SD; Lee C; Billips BK; Habermacher GM; Zhang Q; Liu V; Wong LY; Klumpp DJ; Thumbikat P
    Prostate; 2008 Feb; 68(2):223-9. PubMed ID: 18092352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophages facilitate coal tar pitch extract-induced tumorigenic transformation of human bronchial epithelial cells mediated by NF-κB.
    Feng F; Wu Y; Zhang S; Liu Y; Qin L; Wu Y; Yan Z; Wu W
    PLoS One; 2012; 7(12):e51690. PubMed ID: 23227270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of connexin 43 in cadmium-induced proliferation of human prostate epithelial cells.
    Liu Q; Ji X; Ge Z; Diao H; Chang X; Wang L; Wu Q
    J Appl Toxicol; 2017 Aug; 37(8):933-942. PubMed ID: 28176351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer.
    Wang L; Xu M; Qin J; Lin SC; Lee HJ; Tsai SY; Tsai MJ
    Oncotarget; 2016 Mar; 7(12):14673-83. PubMed ID: 26895100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.