These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28844739)
1. Recent progress on the application of Booth V; Warschawski DE; Santisteban NP; Laadhari M; Marcotte I Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1500-1511. PubMed ID: 28844739 [TBL] [Abstract][Full Text] [Related]
2. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by Laadhari M; Arnold AA; Gravel AE; Separovic F; Marcotte I Biochim Biophys Acta; 2016 Dec; 1858(12):2959-2964. PubMed ID: 27639521 [TBL] [Abstract][Full Text] [Related]
3. Applications of solid-state NMR to membrane proteins. Ladizhansky V Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1577-1586. PubMed ID: 28709996 [TBL] [Abstract][Full Text] [Related]
4. Protocols for Studying the Interaction of MSI-78 with the Membranes of Whole Gram-Positive and Gram-Negative Bacteria by NMR. Santisteban NP; Morrow MR; Booth V Methods Mol Biol; 2017; 1548():217-230. PubMed ID: 28013507 [TBL] [Abstract][Full Text] [Related]
5. ²H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Pius J; Morrow MR; Booth V Biochemistry; 2012 Jan; 51(1):118-25. PubMed ID: 22126434 [TBL] [Abstract][Full Text] [Related]
6. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Lee DK; Bhunia A; Kotler SA; Ramamoorthy A Biochemistry; 2015 Mar; 54(10):1897-907. PubMed ID: 25715195 [TBL] [Abstract][Full Text] [Related]
7. Effect of AMPs MSI-78 and BP100 on the lipid acyl chains of Santisteban NP; Morrow MR; Booth V Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183199. PubMed ID: 31987866 [TBL] [Abstract][Full Text] [Related]
8. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
9. Membrane solid-state NMR in Canada: A historical perspective. Auger M Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1483-1489. PubMed ID: 28652206 [TBL] [Abstract][Full Text] [Related]
10. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78). Lee DK; Brender JR; Sciacca MF; Krishnamoorthy J; Yu C; Ramamoorthy A Biochemistry; 2013 May; 52(19):3254-63. PubMed ID: 23590672 [TBL] [Abstract][Full Text] [Related]
11. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Afonin S; Glaser RW; Sachse C; Salgado J; Wadhwani P; Ulrich AS Biochim Biophys Acta; 2014 Sep; 1838(9):2260-8. PubMed ID: 24699372 [TBL] [Abstract][Full Text] [Related]
12. Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes. Barker RD; McKinley LE; Titmuss S Adv Exp Med Biol; 2016; 915():261-82. PubMed ID: 27193548 [TBL] [Abstract][Full Text] [Related]
13. Solution NMR studies of peptide-lipid interactions in model membranes. Mäler L Mol Membr Biol; 2012 Aug; 29(5):155-76. PubMed ID: 22583052 [TBL] [Abstract][Full Text] [Related]
14. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
15. Bacterial membrane lipids in the action of antimicrobial agents. Epand RM; Epand RF J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436 [TBL] [Abstract][Full Text] [Related]
16. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
17. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Malanovic N; Lohner K Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273 [TBL] [Abstract][Full Text] [Related]
18. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
19. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Kumari S; Booth V Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]