These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 28845460)
1. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Zimmermann M; Kogadeeva M; Gengenbacher M; McEwen G; Mollenkopf HJ; Zamboni N; Kaufmann SHE; Sauer U mSystems; 2017; 2(4):. PubMed ID: 28845460 [TBL] [Abstract][Full Text] [Related]
2. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach. Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. Rienksma RA; Suarez-Diez M; Mollenkopf HJ; Dolganov GM; Dorhoi A; Schoolnik GK; Martins Dos Santos VA; Kaufmann SH; Schaap PJ; Gengenbacher M BMC Genomics; 2015 Feb; 16(1):34. PubMed ID: 25649146 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model. Kjellin J; Pränting M; Bach F; Vaid R; Edelbroek B; Li Z; Hoeppner MP; Grabherr M; Isberg RR; Hagedorn M; Söderbom F BMC Genomics; 2019 Dec; 20(1):961. PubMed ID: 31823727 [TBL] [Abstract][Full Text] [Related]
5. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M; Shirakawa T Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793 [TBL] [Abstract][Full Text] [Related]
6. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis. Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454 [TBL] [Abstract][Full Text] [Related]
7. Modeling the Metabolic State of Rienksma RA; Schaap PJ; Martins Dos Santos VAP; Suarez-Diez M Front Cell Infect Microbiol; 2018; 8():264. PubMed ID: 30123778 [TBL] [Abstract][Full Text] [Related]
9. Dissecting Host-Pathogen Interactions in TB Using Systems-Based Omic Approaches. Borah K; Xu Y; McFadden J Front Immunol; 2021; 12():762315. PubMed ID: 34795672 [TBL] [Abstract][Full Text] [Related]
10. M. tuberculosis curli pili (MTP) facilitates a reduction of microbicidal activity of infected THP-1 macrophages during early stages of infection. Ashokcoomar S; Reedoy KS; Loots DT; Beukes D; van Reenen M; Pillay B; Pillay M Comp Immunol Microbiol Infect Dis; 2022; 90-91():101907. PubMed ID: 36368237 [TBL] [Abstract][Full Text] [Related]
11. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. Hu W; Yang S; Shimada Y; Münch M; Marín-Juez R; Meijer AH; Spaink HP BMC Genomics; 2019 Nov; 20(1):878. PubMed ID: 31747871 [TBL] [Abstract][Full Text] [Related]
14. Berney M; Berney-Meyer L Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597811 [TBL] [Abstract][Full Text] [Related]
15. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Sertbas M; Ulgen KO Front Cell Dev Biol; 2020; 8():566702. PubMed ID: 33251208 [TBL] [Abstract][Full Text] [Related]
16. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Pisu D; Huang L; Grenier JK; Russell DG Cell Rep; 2020 Jan; 30(2):335-350.e4. PubMed ID: 31940480 [TBL] [Abstract][Full Text] [Related]
17. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. Fang X; Wallqvist A; Reifman J BMC Syst Biol; 2010 Nov; 4():160. PubMed ID: 21092312 [TBL] [Abstract][Full Text] [Related]
18. Proteomics of Hoffmann E; Machelart A; Song OR; Brodin P Front Immunol; 2018; 9():86. PubMed ID: 29441067 [TBL] [Abstract][Full Text] [Related]