These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Mitochondrial dynamics and quality control are altered in a hepatic cell culture model of cancer cachexia. Visavadiya NP; Pena GS; Khamoui AV Mol Cell Biochem; 2021 Jan; 476(1):23-34. PubMed ID: 32797334 [TBL] [Abstract][Full Text] [Related]
84. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Chiappalupi S; Sorci G; Vukasinovic A; Salvadori L; Sagheddu R; Coletti D; Renga G; Romani L; Donato R; Riuzzi F J Cachexia Sarcopenia Muscle; 2020 Aug; 11(4):929-946. PubMed ID: 32159297 [TBL] [Abstract][Full Text] [Related]
85. Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: role of Activin. Zhong X; Narasimhan A; Silverman LM; Young AR; Shahda S; Liu S; Wan J; Liu Y; Koniaris LG; Zimmers TA J Cachexia Sarcopenia Muscle; 2022 Aug; 13(4):2146-2161. PubMed ID: 35510530 [TBL] [Abstract][Full Text] [Related]
86. Pancreatic cancer induces muscle wasting by promoting the release of pancreatic adenocarcinoma upregulated factor. Yoo W; Choi H; Son YH; Lee J; Jo S; Jung D; Kim YJ; Koh SS; Yang YR; Kwon ES; Lee KP; Noh KH; Kim KW; Ko Y; Jun E; Kim SC; Kim S Exp Mol Med; 2021 Mar; 53(3):432-445. PubMed ID: 33731895 [TBL] [Abstract][Full Text] [Related]
87. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Fontes-Oliveira CC; Busquets S; Toledo M; Penna F; Paz Aylwin M; Sirisi S; Silva AP; Orpí M; García A; Sette A; Inês Genovese M; Olivan M; López-Soriano FJ; Argilés JM Biochim Biophys Acta; 2013 Mar; 1830(3):2770-8. PubMed ID: 23200745 [TBL] [Abstract][Full Text] [Related]
88. Repeated eccentric contractions positively regulate muscle oxidative metabolism and protein synthesis during cancer cachexia in mice. Hardee JP; Fix DK; Koh HJ; Wang X; Goldsmith EC; Carson JA J Appl Physiol (1985); 2020 Jun; 128(6):1666-1676. PubMed ID: 32407241 [TBL] [Abstract][Full Text] [Related]
89. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica, protects against muscle atrophy in a C26 colon cancer cachexia mouse model. Lee SB; Lee JS; Moon SO; Lee HD; Yoon YS; Son CG J Ethnopharmacol; 2021 Mar; 267():113470. PubMed ID: 33068652 [TBL] [Abstract][Full Text] [Related]
90. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Lee DE; Brown JL; Rosa-Caldwell ME; Blackwell TA; Perry RA; Brown LA; Khatri B; Seo D; Bottje WG; Washington TA; Wiggs MP; Kong BW; Greene NP Physiol Genomics; 2017 May; 49(5):253-260. PubMed ID: 28341621 [TBL] [Abstract][Full Text] [Related]
91. Tumour-derived transforming growth factor-β signalling contributes to fibrosis in patients with cancer cachexia. Lima JDCC; Simoes E; de Castro G; Morais MRPT; de Matos-Neto EM; Alves MJ; Pinto NI; Figueredo RG; Zorn TMT; Felipe-Silva AS; Tokeshi F; Otoch JP; Alcantara P; Cabral FJ; Ferro ES; Laviano A; Seelaender M J Cachexia Sarcopenia Muscle; 2019 Oct; 10(5):1045-1059. PubMed ID: 31273954 [TBL] [Abstract][Full Text] [Related]
93. Carnosol and its analogues attenuate muscle atrophy and fat lipolysis induced by cancer cachexia. Lu S; Li Y; Shen Q; Zhang W; Gu X; Ma M; Li Y; Zhang L; Liu X; Zhang X J Cachexia Sarcopenia Muscle; 2021 Jun; 12(3):779-795. PubMed ID: 33951335 [TBL] [Abstract][Full Text] [Related]
95. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Martinelli GB; Olivari D; Re Cecconi AD; Talamini L; Ottoboni L; Lecker SH; Stretch C; Baracos VE; Bathe OF; Resovi A; Giavazzi R; Cervo L; Piccirillo R Oncogene; 2016 Dec; 35(48):6212-6222. PubMed ID: 27212031 [TBL] [Abstract][Full Text] [Related]
96. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. Bohnert KR; Gallot YS; Sato S; Xiong G; Hindi SM; Kumar A FASEB J; 2016 Sep; 30(9):3053-68. PubMed ID: 27206451 [TBL] [Abstract][Full Text] [Related]
97. Activity level, apoptosis, and development of cachexia in Apc(Min/+) mice. Baltgalvis KA; Berger FG; Peña MM; Mark Davis J; White JP; Carson JA J Appl Physiol (1985); 2010 Oct; 109(4):1155-61. PubMed ID: 20651218 [TBL] [Abstract][Full Text] [Related]
98. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Mina E; Wyart E; Sartori R; Angelino E; Zaggia I; Rausch V; Maldotti M; Pagani A; Hsu MY; Friziero A; Sperti C; Menga A; Graziani A; Hirsch E; Oliviero S; Sandri M; Conti L; Kautz L; Silvestri L; Porporato PE Cell Rep Med; 2023 Dec; 4(12):101306. PubMed ID: 38052214 [TBL] [Abstract][Full Text] [Related]
99. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. Martin A; Freyssenet D J Cachexia Sarcopenia Muscle; 2021 Apr; 12(2):252-273. PubMed ID: 33783983 [TBL] [Abstract][Full Text] [Related]
100. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation. Musolino V; Palus S; Tschirner A; Drescher C; Gliozzi M; Carresi C; Vitale C; Muscoli C; Doehner W; von Haehling S; Anker SD; Mollace V; Springer J J Cachexia Sarcopenia Muscle; 2016 Dec; 7(5):555-566. PubMed ID: 27239419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]