These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28845961)

  • 1. CuFeS
    Guo P; Song H; Liu Y; Wang C
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31752-31762. PubMed ID: 28845961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasmall SnS Quantum Dots Anchored onto Nitrogen-Enriched Carbon Nanospheres as an Advanced Anode Material for Sodium-Ion Batteries.
    Veerasubramani GK; Park MS; Choi JY; Kim DW
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7114-7124. PubMed ID: 31944653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.
    Tu Z; Yang G; Song H; Wang C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):439-446. PubMed ID: 27966898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Coated ZnS-FeS
    Naveenkumar P; Maniyazagan M; Kang N; Yang HW; Kang WS; Kim SJ
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration and Size Engineering from Natural Chalcopyrite to High-Performance Electrode Materials for Lithium-Ion Batteries.
    Zhang Y; Zhao G; Lv X; Tian Y; Yang L; Zou G; Hou H; Zhao H; Ji X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6154-6165. PubMed ID: 30645091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CuFeS2 Quantum Dots and Highly Luminescent CuFeS2 Based Core/Shell Structures: Synthesis, Tunability, and Photophysics.
    Bhattacharyya B; Pandey A
    J Am Chem Soc; 2016 Aug; 138(32):10207-13. PubMed ID: 27447297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Performance and Storage Mechanism of Ag
    Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C
    Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Zn2(OH)3VO3 Nanosheets: First Synthesis, Excellent Lithium-Storage Properties, and Investigation of Electrochemical Mechanism.
    Yang G; Wu M; Wang C
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23746-54. PubMed ID: 27560959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterostructured SnS/TiO
    Zhang Y; Su H; Wang C; Yang D; Li Y; Zhang W; Wang H; Zhang J; Li D
    Nanoscale; 2019 Jul; 11(27):12846-12852. PubMed ID: 31265048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism.
    Yang G; Cui H; Yang G; Wang C
    ACS Nano; 2014 May; 8(5):4474-87. PubMed ID: 24684444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic Framework Derived Porous Hollow Co
    Kang W; Zhang Y; Fan L; Zhang L; Dai F; Wang R; Sun D
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10602-10609. PubMed ID: 28287697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-Manganese Mixed-Sulfide Nanocages Encapsulated by Reduced Graphene Oxide: In Situ Sacrificial Template Synthesis and Superior Lithium Storage Properties.
    Han F; Jiao X; Chen D; Li C
    Chem Asian J; 2017 Sep; 12(17):2284-2290. PubMed ID: 28763162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material.
    Soundharrajan V; Sambandam B; Song J; Kim S; Jo J; Kim S; Lee S; Mathew V; Kim J
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8546-53. PubMed ID: 26983348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage.
    Cheng Q; Li Y; Gao P; Xia G; He S; Yang Y; Pan H; Yu X
    Small; 2023 Sep; 19(38):e2302188. PubMed ID: 37259260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries.
    Wang X; Sun P; Qin J; Wang J; Xiao Y; Cao M
    Nanoscale; 2016 May; 8(19):10330-8. PubMed ID: 27136974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries.
    Wan H; Liu G; Li Y; Weng W; Mwizerwa JP; Tian Z; Chen L; Yao X
    ACS Nano; 2019 Aug; 13(8):9551-9560. PubMed ID: 31398005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.