These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28845994)

  • 1. Discrete Fractional Component Monte Carlo Simulation Study of Dilute Nonionic Surfactants at the Air-Water Interface.
    Yoo B; Marin-Rimoldi E; Mullen RG; Jusufi A; Maginn EJ
    Langmuir; 2017 Sep; 33(38):9793-9802. PubMed ID: 28845994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Molecular Dynamics Simulation-Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions.
    Sresht V; Lewandowski EP; Blankschtein D; Jusufi A
    Langmuir; 2017 Aug; 33(33):8319-8329. PubMed ID: 28749139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of mixed lennard-jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Nov; 23(23):11580-6. PubMed ID: 17918866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of mixed nonionic Brij surfactants in water.
    Yahya R; Karjiban RA; Basri M; Rahman MB; Girardi M
    J Mol Model; 2014 Nov; 20(11):2512. PubMed ID: 25381172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Logarithmic finite-size effects on interfacial free energies: phenomenological theory and Monte Carlo studies.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012128. PubMed ID: 25122272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations.
    Shi W; Maginn EJ
    J Chem Theory Comput; 2007 Jul; 3(4):1451-63. PubMed ID: 26633216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move.
    Shi W; Maginn EJ
    J Comput Chem; 2008 Nov; 29(15):2520-30. PubMed ID: 18478586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang-Landau simulations: applications to benzene and n-alkanes.
    Desgranges C; Delhommelle J
    J Chem Phys; 2009 Jun; 130(24):244109. PubMed ID: 19566144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl.
    Moučka F; Lísal M; Škvor J; Jirsák J; Nezbeda I; Smith WR
    J Phys Chem B; 2011 Jun; 115(24):7849-61. PubMed ID: 21627127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalization of the Wang-Landau method for off-lattice simulations.
    Shell MS; Debenedetti PG; Panagiotopoulos AZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056703. PubMed ID: 12513633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties.
    Miqueu C; Míguez JM; Piñeiro MM; Lafitte T; Mendiboure B
    J Phys Chem B; 2011 Aug; 115(31):9618-25. PubMed ID: 21718009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using isothermal-isobaric Monte Carlo simulation to study the wetting behavior of model systems.
    Jain K; Rane KS; Errington JR
    J Chem Phys; 2019 Feb; 150(8):084110. PubMed ID: 30823776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-theoretic simulations in the Gibbs ensemble.
    Riggleman RA; Fredrickson GH
    J Chem Phys; 2010 Jan; 132(2):024104. PubMed ID: 20095660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tween-80 on Water/Oil Interface: Structure and Interfacial Tension by Molecular Dynamics Simulations.
    Luz AM; Barbosa G; Manske C; Tavares FW
    Langmuir; 2023 Mar; 39(9):3255-3265. PubMed ID: 36825990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed micellization of gemini and conventional surfactant in aqueous solution: a lattice Monte Carlo simulation.
    Gharibi H; Khodadadi Z; Mousavi-Khoshdel SM; Hashemianzadeh SM; Javadian S
    J Mol Graph Model; 2014 Sep; 53():221-227. PubMed ID: 25218241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The properties of a binary mixture of nonionic surfactants in water at the water/air interface.
    Szymczyk K; Jańczuk B
    Langmuir; 2007 Apr; 23(9):4972-81. PubMed ID: 17397200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, interfacial properties, and dynamics of the sodium alkyl sulfate type surfactant monolayer at the water/trichloroethylene interface: a molecular dynamics simulation study.
    Shi WX; Guo HX
    J Phys Chem B; 2010 May; 114(19):6365-76. PubMed ID: 20420404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gemini surfactants at the air/water interface: a fully atomistic molecular dynamics study.
    Khurana E; Nielsen SO; Klein ML
    J Phys Chem B; 2006 Nov; 110(44):22136-42. PubMed ID: 17078649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.