These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 28846091)

  • 1. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing.
    Jiang L; Shao C; Wu QJ; Chen G; Zhou J; Yang B; Li H; Gou LT; Zhang Y; Wang Y; Yeo GW; Zhou Y; Fu XD
    Nat Struct Mol Biol; 2017 Oct; 24(10):816-824. PubMed ID: 28846091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation.
    Shen W; Liang XH; Sun H; De Hoyos CL; Crooke ST
    PLoS One; 2017; 12(3):e0173494. PubMed ID: 28288210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long noncoding RNA GAPLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO.
    Yang P; Chen T; Xu Z; Zhu H; Wang J; He Z
    Oncotarget; 2016 Jul; 7(27):42183-42194. PubMed ID: 27259250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
    Roth BM; Ishimaru D; Hennig M
    J Biol Chem; 2013 Sep; 288(37):26785-99. PubMed ID: 23893406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.
    Liu H; Liang C; Kollipara RK; Matsui M; Ke X; Jeong BC; Wang Z; Yoo KS; Yadav GP; Kinch LN; Grishin NV; Nam Y; Corey DR; Kittler R; Liu Q
    Mol Cell; 2016 Aug; 63(3):420-32. PubMed ID: 27425409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulges control pri-miRNA processing in a position and strand-dependent manner.
    Li S; Le TN; Nguyen TD; Trinh TA; Nguyen TA
    RNA Biol; 2021 Nov; 18(11):1716-1726. PubMed ID: 33382955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Basis for pri-miRNA Recognition by Drosha.
    Jin W; Wang J; Liu CP; Wang HW; Xu RM
    Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.
    Morchikh M; Cribier A; Raffel R; Amraoui S; Cau J; Severac D; Dubois E; Schwartz O; Bennasser Y; Benkirane M
    Mol Cell; 2017 Aug; 67(3):387-399.e5. PubMed ID: 28712728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microprocessor activity controls differential miRNA biogenesis In Vivo.
    Conrad T; Marsico A; Gehre M; Orom UA
    Cell Rep; 2014 Oct; 9(2):542-54. PubMed ID: 25310978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer.
    de Silva HC; Lin MZ; Phillips L; Martin JL; Baxter RC
    Cell Mol Life Sci; 2019 May; 76(10):2015-2030. PubMed ID: 30725116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paraspeckle-independent co-transcriptional regulation of nuclear microRNA biogenesis by SFPQ.
    Thivierge C; Bellefeuille M; Diwan SS; Dyakov BJA; Leventis R; Perron G; Najafabadi HS; Gravel SP; Gingras AC; Duchaine TF
    Cell Rep; 2024 Sep; 43(9):114695. PubMed ID: 39250314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-transcriptional control of DGCR8 expression by the Microprocessor.
    Triboulet R; Chang HM; Lapierre RJ; Gregory RI
    RNA; 2009 Jun; 15(6):1005-11. PubMed ID: 19383765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence.
    Huang CJ; Das U; Xie W; Ducasse M; Tucker HO
    Aging (Albany NY); 2016 Dec; 8(12):3356-3374. PubMed ID: 27992859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Anatomy of the Human Microprocessor.
    Nguyen TA; Jo MH; Choi YG; Park J; Kwon SC; Hohng S; Kim VN; Woo JS
    Cell; 2015 Jun; 161(6):1374-87. PubMed ID: 26027739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tankyrase promotes primary precursor miRNA processing to precursor miRNA.
    Mizutani A; Seimiya H
    Biochem Biophys Res Commun; 2020 Feb; 522(4):945-951. PubMed ID: 31806370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocellular Carcinoma and Nuclear Paraspeckles: Induction in Chemoresistance and Prediction for Poor Survival.
    Kessler SM; Hosseini K; Hussein UK; Kim KM; List M; Schultheiß CS; Schulz MH; Laggai S; Jang KY; Kiemer AK
    Cell Physiol Biochem; 2019; 52(4):787-801. PubMed ID: 30946555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of microRNA primary transcripts requires heme in mammalian cells.
    Weitz SH; Gong M; Barr I; Weiss S; Guo F
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1861-6. PubMed ID: 24449907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncanonical processing by animal Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Le TN; Nguyen TA
    Mol Cell; 2023 Jun; 83(11):1810-1826.e8. PubMed ID: 37267903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.