BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28846373)

  • 1. Superhelicity Constrains a Localized and R-Loop-Dependent Formation of G-Quadruplexes at the Upstream Region of Transcription.
    Zheng KW; He YD; Liu HH; Li XM; Hao YH; Tan Z
    ACS Chem Biol; 2017 Oct; 12(10):2609-2618. PubMed ID: 28846373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of DNA:RNA hybrid G-quadruplex in bacterial cells and its dominance over the intramolecular DNA G-quadruplex in mediating transcription termination.
    Wu RY; Zheng KW; Zhang JY; Hao YH; Tan Z
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2447-51. PubMed ID: 25613367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strand-Biased Formation of G-Quadruplexes in DNA Duplexes Transcribed with T7 RNA Polymerase.
    Liu JQ; Xiao S; Hao YH; Tan Z
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8992-6. PubMed ID: 26074352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of DNA supercoiling on G-quadruplex formation.
    Sekibo DAT; Fox KR
    Nucleic Acids Res; 2017 Dec; 45(21):12069-12079. PubMed ID: 29036619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents.
    Sun D; Guo K; Rusche JJ; Hurley LH
    Nucleic Acids Res; 2005; 33(18):6070-80. PubMed ID: 16239639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression.
    Sun D; Hurley LH
    J Med Chem; 2009 May; 52(9):2863-74. PubMed ID: 19385599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix.
    Zhang C; Liu HH; Zheng KW; Hao YH; Tan Z
    Nucleic Acids Res; 2013 Aug; 41(14):7144-52. PubMed ID: 23716646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation.
    Broccoli S; Rallu F; Sanscartier P; Cerritelli SM; Crouch RJ; Drolet M
    Mol Microbiol; 2004 Jun; 52(6):1769-79. PubMed ID: 15186424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor.
    Xia Y; Zheng KW; He YD; Liu HH; Wen CJ; Hao YH; Tan Z
    Nucleic Acids Res; 2018 Aug; 46(14):7418-7424. PubMed ID: 29982790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of ligand decoration, and ligand-induced perturbation, of G-quadruplexes in a plasmid using atomic force microscopy.
    Mela I; Kranaster R; Henderson RM; Balasubramanian S; Edwardson JM
    Biochemistry; 2012 Jan; 51(2):578-85. PubMed ID: 22225525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA:RNA hybrid G-quadruplex formation upstream of transcription start site.
    Zhang JY; Xia Y; Hao YH; Tan Z
    Sci Rep; 2020 May; 10(1):7429. PubMed ID: 32366914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure.
    Takahashi S; Sugimoto N
    Biophys Chem; 2017 Dec; 231():146-154. PubMed ID: 28188007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.
    Gaynutdinov TI; Englund EA; Appella DH; Onyshchenko MI; Neumann RD; Panyutin IG
    Nucleic Acid Ther; 2015 Apr; 25(2):78-84. PubMed ID: 25650982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2009 Dec; 37(22):7570-80. PubMed ID: 19820116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands.
    Agarwal T; Roy S; Kumar S; Chakraborty TK; Maiti S
    Biochemistry; 2014 Jun; 53(23):3711-8. PubMed ID: 24850370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability.
    Largy E; Mergny JL; Gabelica V
    Met Ions Life Sci; 2016; 16():203-58. PubMed ID: 26860303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Detection Reveals Responsive Cotranscriptional Formation of Persistent Intramolecular DNA and Intermolecular DNA:RNA Hybrid G-Quadruplexes Stabilized by R-Loop.
    Zhao Y; Zhang JY; Zhang ZY; Tong TJ; Hao YH; Tan Z
    Anal Chem; 2017 Jun; 89(11):6036-6042. PubMed ID: 28447783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation.
    Yuan G; Zhang Q; Zhou J; Li H
    Mass Spectrom Rev; 2011; 30(6):1121-42. PubMed ID: 21520218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA.
    Zhang JY; Zheng KW; Xiao S; Hao YH; Tan Z
    J Am Chem Soc; 2014 Jan; 136(4):1381-90. PubMed ID: 24392825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.