These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28846381)

  • 1. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.
    Petryayeva E; Jeen T; Algar WR
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30359-30372. PubMed ID: 28846381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Steric Impact of Surface Ligands on the Proteolytic Turnover of Quantum Dot-Peptide Conjugates.
    Krause KD; Rees K; Algar WR
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots.
    Susumu K; Mei BC; Mattoussi H
    Nat Protoc; 2009; 4(3):424-36. PubMed ID: 19265801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity.
    Krause KD; Rees K; Darwish GH; Bernal-Escalante J; Algar WR
    ACS Nano; 2024 Jul; 18(26):17018-17030. PubMed ID: 38845136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells.
    Muro E; Fragola A; Pons T; Lequeux N; Ioannou A; Skourides P; Dubertret B
    Small; 2012 Apr; 8(7):1029-37. PubMed ID: 22378567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size dependence of photocatalytic hydrogen generation for CdTe quantum dots.
    Yin J; Cogan NMB; Burke R; Hou Z; Sowers KL; Krauss TD
    J Chem Phys; 2019 Nov; 151(17):174707. PubMed ID: 31703490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of biotin-functionalized luminescent quantum dots.
    Susumu K; Uyeda HT; Medintz IL; Mattoussi H
    J Biomed Biotechnol; 2007; 2007():90651. PubMed ID: 18382625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands.
    Susumu K; Uyeda HT; Medintz IL; Pons T; Delehanty JB; Mattoussi H
    J Am Chem Soc; 2007 Nov; 129(45):13987-96. PubMed ID: 17956097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2006 Dec; 22(26):11346-52. PubMed ID: 17154624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles.
    Susumu K; Oh E; Delehanty JB; Blanco-Canosa JB; Johnson BJ; Jain V; Hervey WJ; Algar WR; Boeneman K; Dawson PE; Medintz IL
    J Am Chem Soc; 2011 Jun; 133(24):9480-96. PubMed ID: 21612225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins.
    Clapp AR; Goldman ER; Mattoussi H
    Nat Protoc; 2006; 1(3):1258-66. PubMed ID: 17406409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Dot-Peptide Conjugates as Energy Transfer Probes for Sensing the Proteolytic Activity of Matrix Metalloproteinase-14.
    Jin Z; Dridi N; Palui G; Palomo V; Jokerst JV; Dawson PE; Sang QA; Mattoussi H
    Anal Chem; 2023 Feb; 95(5):2713-2722. PubMed ID: 36705737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter.
    Yu YQ; Chen WQ; Li XH; Liu M; He XH; Liu Y; Jiang FL
    Langmuir; 2023 Mar; 39(11):3967-3978. PubMed ID: 36877959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and characterization of stable, pH-sensitive layer-by-layer modified colloidal quantum dots.
    Nagaraja AT; Sooresh A; Meissner KE; McShane MJ
    ACS Nano; 2013 Jul; 7(7):6194-202. PubMed ID: 23782214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capping of Mn-Doped ZnS Quantum Dots with DHLA for Their Stabilization in Aqueous Media: Determination of the Nanoparticle Number Concentration and Surface Ligand Density.
    Garcia-Cortes M; Sotelo González E; Fernández-Argüelles MT; Encinar JR; Costa-Fernández JM; Sanz-Medel A
    Langmuir; 2017 Jun; 33(25):6333-6341. PubMed ID: 28555495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.