BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28846385)

  • 1. Diels-Alder "Clickable" Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth.
    Kalaoglu-Altan OI; Kirac-Aydin A; Sumer Bolu B; Sanyal R; Sanyal A
    Bioconjug Chem; 2017 Sep; 28(9):2420-2428. PubMed ID: 28846385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Clickable" Polymeric Nanofibers through Hydrophilic-Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms.
    Kalaoglu-Altan OI; Sanyal R; Sanyal A
    Biomacromolecules; 2015 May; 16(5):1590-7. PubMed ID: 25844802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing.
    Gevrek TN; Kosif I; Sanyal A
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27946-27954. PubMed ID: 28745494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthogonally "Clickable" Biodegradable Nanofibers: Tailoring Biomaterials for Specific Protein Immobilization.
    Kalaoglu-Altan OI; Sanyal R; Sanyal A
    ACS Omega; 2019 Jan; 4(1):121-129. PubMed ID: 31459318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization.
    Chambre L; Maouati H; Oz Y; Sanyal R; Sanyal A
    Bioconjug Chem; 2020 Sep; 31(9):2116-2124. PubMed ID: 32786374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diels-Alder "Clickable" Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform.
    Yuksekdag YN; Gevrek TN; Sanyal A
    ACS Macro Lett; 2017 Apr; 6(4):415-420. PubMed ID: 35610862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation.
    Wang YY; Lü LX; Feng ZQ; Xiao ZD; Huang NP
    Biomed Mater; 2010 Oct; 5(5):054112. PubMed ID: 20876956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of functionalized poly(ester carbonate) with laminin-derived peptide for promoting neurite outgrowth of PC12 cells.
    Xing D; Ma L; Gao C
    Macromol Biosci; 2014 Oct; 14(10):1429-36. PubMed ID: 24962245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of novel electrospun poly(ϵ-caprolactone)-based nanofibrous scaffolds.
    Valizadeh A; Bakhtiary M; Akbarzadeh A; Salehi R; Frakhani SM; Ebrahimi O; Rahmati-yamchi M; Davaran S
    Artif Cells Nanomed Biotechnol; 2016; 44(2):504-9. PubMed ID: 25307268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model.
    Nishiguchi A; Singh S; Wessling M; Kirkpatrick CJ; Möller M
    Biomacromolecules; 2017 Mar; 18(3):719-727. PubMed ID: 28100051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications.
    Grande D; Ramier J; Versace DL; Renard E; Langlois V
    N Biotechnol; 2017 Jul; 37(Pt A):129-137. PubMed ID: 27338013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications.
    Jaymand M; Sarvari R; Abbaszadeh P; Massoumi B; Eskandani M; Beygi-Khosrowshahi Y
    J Biomed Mater Res A; 2016 Nov; 104(11):2673-84. PubMed ID: 27325453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A library of multifunctional polyesters with "peptide-like" pendant functional groups.
    Gokhale S; Xu Y; Joy A
    Biomacromolecules; 2013 Aug; 14(8):2489-93. PubMed ID: 23789897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds.
    Bettahalli NM; Arkesteijn IT; Wessling M; Poot AA; Stamatialis D
    Acta Biomater; 2013 Jun; 9(6):6928-35. PubMed ID: 23485858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S
    Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.