BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28846391)

  • 1. Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation.
    Pires IS; Belcher DA; Palmer AF
    Biochemistry; 2017 Oct; 56(40):5245-5259. PubMed ID: 28846391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel manufacturing method for producing apohemoglobin and its biophysical properties.
    Pires IS; Belcher DA; Hickey R; Miller C; Badu-Tawiah AK; Baek JH; Buehler PW; Palmer AF
    Biotechnol Bioeng; 2020 Jan; 117(1):125-145. PubMed ID: 31612988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apohemoglobin-haptoglobin complex attenuates the pathobiology of circulating acellular hemoglobin and heme.
    Munoz CJ; Pires IS; Baek JH; Buehler PW; Palmer AF; Cabrales P
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1296-H1307. PubMed ID: 32302494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Photodynamic Therapy Using the Apohemoglobin-Haptoglobin Complex as a Carrier of Aluminum Phthalocyanine.
    Pires IS; O'Boyle QT; Munoz CJ; Savla C; Cabrales P; Palmer AF
    ACS Appl Bio Mater; 2020 Jul; 3(7):4495-4506. PubMed ID: 35025448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ethylene glycol) Surface-Conjugated Apohemoglobin as a Synthetic Heme Scavenger.
    Pires IS; Savla C; Palmer AF
    Biomacromolecules; 2020 Jun; 21(6):2155-2164. PubMed ID: 32186855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin.
    Briand VA; Thilakarathne V; Kasi RM; Kumar CV
    Talanta; 2012 Sep; 99():113-8. PubMed ID: 22967529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Human Apohemoglobin Unfolding.
    Samuel PP; Ou WC; Phillips GN; Olson JS
    Biochemistry; 2017 Mar; 56(10):1444-1459. PubMed ID: 28218841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apohemoglobin-haptoglobin complex alleviates iron toxicity in mice with β-thalassemia via scavenging of cell-free hemoglobin and heme.
    Munoz CJ; Pires IS; Jani V; Gopal S; Palmer AF; Cabrales P
    Biomed Pharmacother; 2022 Dec; 156():113911. PubMed ID: 36308920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-dependent spectral changes accompany CN-hemin binding to human apohemoglobin.
    Vasudevan G; McDonald MJ
    J Protein Chem; 2000 Oct; 19(7):583-90. PubMed ID: 11233172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association rate constant for heme binding to globin is independent of protein structure.
    Hargrove MS; Barrick D; Olson JS
    Biochemistry; 1996 Sep; 35(35):11293-9. PubMed ID: 8784183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Esterification of the propionate groups promotes alpha/beta hemoglobin chain homogeneity of CN-hemin binding.
    Jennings TM; McDonald MJ
    Biochem Biophys Res Commun; 2002 May; 293(5):1354-7. PubMed ID: 12054662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.
    Aranda R; Cai H; Worley CE; Levin EJ; Li R; Olson JS; Phillips GN; Richards MP
    Proteins; 2009 Apr; 75(1):217-30. PubMed ID: 18831041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The conformational dynamics of the tetramer hemoglobin molecule as revealed by hydrogen exchange. III. Influence of the heme removal].
    Abaturov LV; Nosova NG; Shliapnikova SV
    Mol Biol (Mosk); 2006; 40(5):900-9. PubMed ID: 17086992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetic mechanism of heme binding to human apohemoglobin.
    Rose MY; Olson JS
    J Biol Chem; 1983 Apr; 258(7):4298-303. PubMed ID: 6833258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced conformational states in human apohemoglobin on binding of haptoglobin 1--1. Effect of added heme as a probe of frozen structures.
    Waks M; Beychok S
    Biochemistry; 1974 Jan; 13(1):15-22. PubMed ID: 4808699
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.
    Li X; Zheng W; Zhang L; Yu P; Lin Y; Su L; Mao L
    Anal Chem; 2009 Oct; 81(20):8557-63. PubMed ID: 19754140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes.
    Dam RJ; Kongslie KF; Griffith OH
    Biophys J; 1974 Dec; 14(12):933-9. PubMed ID: 4429771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study.
    Makarska-Bialokoz M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():23-32. PubMed ID: 29212045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.