These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28846405)

  • 41. Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction.
    Caban M; Folentarska A; Lis H; Kobylis P; Bielicka-Giełdoń A; Kumirska J; Ciesielski W; Stepnowski P
    Chemosphere; 2020 Jun; 248():125976. PubMed ID: 32006830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity.
    Shetty R; Prakash NB
    Sci Rep; 2020 Jul; 10(1):12249. PubMed ID: 32704053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils.
    Jeong CY; Wang JJ; Dodla SK; Eberhardt TL; Groom L
    J Environ Qual; 2012; 41(4):1185-92. PubMed ID: 22751061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil.
    Zhang F; Li Y; Zhang G; Li W; Yang L
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9575-9584. PubMed ID: 28247270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Germination tests for assessing biochar quality.
    Rogovska N; Laird D; Cruse RM; Trabue S; Heaton E
    J Environ Qual; 2012; 41(4):1014-22. PubMed ID: 22751043
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of straw decayed products of four crops on the amelioration of soil acidity and maize growth in two acidic Ultisols.
    Pan XY; Xu RK; Nkoh JN; Lu HL; Hua H; Guan P
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5092-5100. PubMed ID: 32955666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.
    Tian X; Li C; Zhang M; Wan Y; Xie Z; Chen B; Li W
    PLoS One; 2018; 13(1):e0189924. PubMed ID: 29324750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of corn (Zea mays L.) residue and its biochar on soil C and plant growth.
    Calderón FJ; Benjamin J; Vigil MF
    PLoS One; 2015; 10(4):e0121006. PubMed ID: 25836653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil.
    Uchimiya M; Bannon DI; Wartelle LH
    J Agric Food Chem; 2012 Feb; 60(7):1798-809. PubMed ID: 22280497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars.
    Qian L; Chen B; Chen M
    Sci Rep; 2016 Jul; 6():29346. PubMed ID: 27385598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.
    Uchimiya M; Klasson KT; Wartelle LH; Lima IM
    Chemosphere; 2011 Mar; 82(10):1431-7. PubMed ID: 21147495
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation.
    Korai PK; Xia X; Liu X; Bian R; Omondi MO; Nahayo A; Pan G
    Sci Rep; 2018 Jan; 8(1):802. PubMed ID: 29339780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extent of pyrolysis impacts on fast pyrolysis biochar properties.
    Brewer CE; Hu YY; Schmidt-Rohr K; Loynachan TE; Laird DA; Brown RC
    J Environ Qual; 2012; 41(4):1115-22. PubMed ID: 22751053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Screening biochars for heavy metal retention in soil: role of oxygen functional groups.
    Uchimiya M; Chang S; Klasson KT
    J Hazard Mater; 2011 Jun; 190(1-3):432-41. PubMed ID: 21489689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Dynamic Effects of Different Biochars on Soil Properties and Crop Yield of Acid Farmland].
    Yang CD; Zong YT; Lu SG
    Huan Jing Ke Xue; 2020 Apr; 41(4):1914-1920. PubMed ID: 32608700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
    Tong X; Xu R
    J Environ Sci (China); 2013 Apr; 25(4):652-8. PubMed ID: 23923773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and quantification of biochar alkalinity.
    Fidel RB; Laird DA; Thompson ML; Lawrinenko M
    Chemosphere; 2017 Jan; 167():367-373. PubMed ID: 27743533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides.
    Yavari S; Malakahmad A; Sapari NB; Yavari S
    J Environ Manage; 2017 May; 193():201-210. PubMed ID: 28226259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry.
    Pandit NR; Mulder J; Hale SE; Schmidt HP; Cornelissen G
    PLoS One; 2017; 12(4):e0176378. PubMed ID: 28448621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of feedstock on the copper removal capacity of waste-derived biochars.
    Arán D; Antelo J; Fiol S; Macías F
    Bioresour Technol; 2016 Jul; 212():199-206. PubMed ID: 27099945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.