These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28846421)

  • 1. Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction.
    Saadi FH; Carim AI; Drisdell WS; Gul S; Baricuatro JH; Yano J; Soriaga MP; Lewis NS
    J Am Chem Soc; 2017 Sep; 139(37):12927-12930. PubMed ID: 28846421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water.
    Sun Y; Liu C; Grauer DC; Yano J; Long JR; Yang P; Chang CJ
    J Am Chem Soc; 2013 Nov; 135(47):17699-702. PubMed ID: 24219808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.
    Pu Z; Zhang C; Amiinu IS; Li W; Wu L; Mu S
    ACS Appl Mater Interfaces; 2017 May; 9(19):16187-16193. PubMed ID: 28452469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst.
    Wu C; Yang Y; Dong D; Zhang Y; Li J
    Small; 2017 Apr; 13(15):. PubMed ID: 28145620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flower-Like Nickel Phosphide Microballs Assembled by Nanoplates with Exposed High-Energy (0 0 1) Facets: Efficient Electrocatalyst for the Hydrogen Evolution Reaction.
    Wang H; Xie Y; Cao H; Li Y; Li L; Xu Z; Wang X; Xiong N; Pan K
    ChemSusChem; 2017 Dec; 10(24):4899-4908. PubMed ID: 28971593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cu
    Du H; Zhang X; Tan Q; Kong R; Qu F
    Chem Commun (Camb); 2017 Nov; 53(88):12012-12015. PubMed ID: 29057400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.
    Kornienko N; Resasco J; Becknell N; Jiang CM; Liu YS; Nie K; Sun X; Guo J; Leone SR; Yang P
    J Am Chem Soc; 2015 Jun; 137(23):7448-55. PubMed ID: 26051104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodeposited Nickel-Cobalt-Sulfide Catalyst for the Hydrogen Evolution Reaction.
    Irshad A; Munichandraiah N
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19746-19755. PubMed ID: 28513129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst.
    Lassalle-Kaiser B; Merki D; Vrubel H; Gul S; Yachandra VK; Hu X; Yano J
    J Am Chem Soc; 2015 Jan; 137(1):314-21. PubMed ID: 25427231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulating Co
    Yang Y; Liang X; Li F; Li S; Li X; Ng SP; Wu CL; Li R
    ChemSusChem; 2018 Jan; 11(2):376-388. PubMed ID: 29024394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Graphene Aerogels Decorated with Cobalt Phosphide Nanoparticles as Electrocatalysts for the Hydrogen Evolution Reaction.
    Zhang X; Han Y; Huang L; Dong S
    ChemSusChem; 2016 Nov; 9(21):3049-3053. PubMed ID: 27553782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution.
    Liu Q; Tian J; Cui W; Jiang P; Cheng N; Asiri AM; Sun X
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6710-4. PubMed ID: 24845625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-Layer-Deposited MoN
    Ramesh R; Nandi DK; Kim TH; Cheon T; Oh J; Kim SH
    ACS Appl Mater Interfaces; 2019 May; 11(19):17321-17332. PubMed ID: 31012567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles.
    Popczun EJ; Read CG; Roske CW; Lewis NS; Schaak RE
    Angew Chem Int Ed Engl; 2014 May; 53(21):5427-30. PubMed ID: 24729482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media.
    Hou CC; Cao S; Fu WF; Chen Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28412-9. PubMed ID: 26642257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converting surface-oxidized cobalt phosphides into Co
    Mo Q; He L; Zeng J; Gao Q
    Nanotechnology; 2019 Sep; 30(39):394001. PubMed ID: 31195381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Water Splitting Catalyzed by Cobalt Phosphide-Based Nanoneedle Arrays Supported on Carbon Cloth.
    Wang P; Song F; Amal R; Ng YH; Hu X
    ChemSusChem; 2016 Mar; 9(5):472-7. PubMed ID: 26811938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst.
    Lin WS; Rinawati M; Huang WH; Chang CY; Chang LY; Cheng YS; Chang CC; Chen JL; Su WN; Yeh MH
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):677-687. PubMed ID: 37864872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications.
    Silva TF; Martins LM; Guedes da Silva MF; Kuznetsov ML; Fernandes AR; Silva A; Pan CJ; Lee JF; Hwang BJ; Pombeiro AJ
    Chem Asian J; 2014 Apr; 9(4):1132-43. PubMed ID: 24482364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the Stability and Operability of Cobalt Phosphide Electrocatalyst for Hydrogen Evolution.
    Ahn HS; Bard AJ
    Anal Chem; 2017 Aug; 89(16):8574-8579. PubMed ID: 28726380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.