These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28846430)

  • 1. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability.
    Vatamanu J; Borodin O
    J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of anionic nanoclusters at the electrode interface in water-in-salt electrolytes.
    Zhang L; Yu Y; Suo L; Zhuang W; He L; Zhang X; Hong L; Tan P
    Phys Chem Chem Phys; 2023 Apr; 25(15):10301-10312. PubMed ID: 36987745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-in-Bisalt Electrolyte with Record Salt Concentration and Widened Electrochemical Stability Window.
    Forero-Saboya J; Hosseini-Bab-Anari E; Abdelhamid ME; Moth-Poulsen K; Johansson P
    J Phys Chem Lett; 2019 Sep; 10(17):4942-4946. PubMed ID: 31403300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations.
    Kondou S; Nozaki E; Terada S; Thomas ML; Ueno K; Umebayashi Y; Dokko K; Watanabe M
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(35):20167-20175. PubMed ID: 30220955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the Solid Polymer Electrolyte-Electrode Interface in the Vicinity of Electrochemical Stability Limits.
    Sångeland C; Hernández G; Brandell D; Younesi R; Hahlin M; Mindemark J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28716-28728. PubMed ID: 35708265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of electrode-dependent interfacial structures on hydrate-melt electrolytes.
    Takenaka N; Inagaki T; Shimada T; Yamada Y; Nagaoka M; Yamada A
    J Chem Phys; 2020 Mar; 152(12):124706. PubMed ID: 32241124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Electrolyte on the Electrode/Electrolyte Interface Formation on InSb Electrode in Mg-Ion Batteries.
    Mohammad I; Blondeau L; Leroy J; Khodja H; Gauthier M
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial structure and electrochemical stability of electrolytes: methylene methanedisulfonate as an additive.
    Wang Y; Yu X; Liu Y; Wang Q
    Phys Chem Chem Phys; 2018 Dec; 21(1):217-223. PubMed ID: 30516768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen Redox Reaction in Ionic Liquid and Ionic Liquid-like Based Electrolytes: A Scanning Electrochemical Microscopy Study.
    Ruggeri I; Arbizzani C; Rapino S; Soavi F
    J Phys Chem Lett; 2019 Jun; 10(12):3333-3338. PubMed ID: 31141369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure.
    Wen X; Yu Z; Zhao Y; Zhang J; Qiao R; Cheng L; Ban C; Guo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52461-52468. PubMed ID: 34719233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations.
    Li CY; Chen M; Liu S; Lu X; Meng J; Yan J; Abruña HD; Feng G; Lian T
    Nat Commun; 2022 Sep; 13(1):5330. PubMed ID: 36088353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.
    Zhu Y; He X; Mo Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23685-93. PubMed ID: 26440586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water.
    Tang C; Li M; Du J; Wang Y; Zhang Y; Wang G; Shi X; Li Y; Liu J; Lian C; Li L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1162-1172. PubMed ID: 34735852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.