These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28846430)

  • 21. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water.
    Tang C; Li M; Du J; Wang Y; Zhang Y; Wang G; Shi X; Li Y; Liu J; Lian C; Li L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1162-1172. PubMed ID: 34735852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are NaTFSI and NaFSI Salt-Based Water-in-Salt Electrolytes Structurally Similar or Different?
    Singh N; Kashyap HK
    J Phys Chem B; 2024 Aug; 128(31):7615-7626. PubMed ID: 39045859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water dynamics and sum-frequency generation spectra at electrode/aqueous electrolyte interfaces.
    Olivieri JF; Hynes JT; Laage D
    Faraday Discuss; 2024 Feb; 249(0):289-302. PubMed ID: 37791579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.
    Takada K; Yamada Y; Watanabe E; Wang J; Sodeyama K; Tateyama Y; Hirata K; Kawase T; Yamada A
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33802-33809. PubMed ID: 28766928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvate Ionic Liquids at Electrified Interfaces.
    Yu Z; Fang C; Huang J; Sumpter BG; Qiao R
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32151-32161. PubMed ID: 30156822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cl
    Son S; Yeo J; Chang J
    Anal Chem; 2022 Sep; 94(37):12691-12698. PubMed ID: 36074896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes.
    Smith GD; Borodin O; Russo SP; Rees RJ; Hollenkamp AF
    Phys Chem Chem Phys; 2009 Nov; 11(42):9884-97. PubMed ID: 19851568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries.
    Zampardi G; Trocoli R; Schuhmann W; La Mantia F
    Phys Chem Chem Phys; 2017 Oct; 19(41):28381-28387. PubMed ID: 29034947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes.
    Amiri M; Bélanger D
    ChemSusChem; 2021 Jun; 14(12):2487-2500. PubMed ID: 33973406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theory of the Double Layer in Water-in-Salt Electrolytes.
    McEldrew M; Goodwin ZAH; Kornyshev AA; Bazant MZ
    J Phys Chem Lett; 2018 Oct; 9(19):5840-5846. PubMed ID: 30229648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capacitance enhancement via electrode patterning.
    Ho TA; Striolo A
    J Chem Phys; 2013 Nov; 139(20):204708. PubMed ID: 24289370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion.
    Triolo A; Di Lisio V; Lo Celso F; Appetecchi GB; Fazio B; Chater P; Martinelli A; Sciubba F; Russina O
    J Phys Chem B; 2021 Nov; 125(45):12500-12517. PubMed ID: 34738812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.
    Qu W; Dorjpalam E; Rajagopalan R; Randall CA
    ChemSusChem; 2014 Apr; 7(4):1162-9. PubMed ID: 24677808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge-discharge performance of the Li4Ti5O12 electrode.
    Shimizu M; Usui H; Sakaguchi H
    Phys Chem Chem Phys; 2016 Feb; 18(7):5139-47. PubMed ID: 26548773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.