These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 28846498)

  • 1. Benefits of incorporating the adaptive dynamic range optimization amplification scheme into an assistive listening device for people with mild or moderate hearing loss.
    Chang HY; Luo CH; Lo TS; Chen HC; Huang KY; Liao WH; Su MC; Liu SY; Wang NM
    Assist Technol; 2018; 30(5):226-232. PubMed ID: 28846498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of Compression Amplification in Telephone Bluetooth-Assistive Listening Devices for People with Hearing Loss.
    Luo CH; Chang HY; Lo TS; Tai CC
    J Am Acad Audiol; 2019 Mar; 30(3):187-197. PubMed ID: 30461395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance benefits for adults using a cochlear implant with adaptive dynamic range optimization (ADRO): a comparative study.
    Müller-Deile J; Kiefer J; Wyss J; Nicolai J; Battmer R
    Cochlear Implants Int; 2008 Mar; 9(1):8-26. PubMed ID: 18300224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal studies using adaptive dynamic range optimization (ADRO) technology.
    Iwaki T; Blamey P; Kubo T
    Int J Audiol; 2008 Jun; 47(6):311-8. PubMed ID: 18569103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing dynamic range in children using the nucleus cochlear implant.
    Dawson PW; Decker JA; Psarros CE
    Ear Hear; 2004 Jun; 25(3):230-41. PubMed ID: 15179114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive dynamic range optimization (ADRO): a digital amplification strategy for hearing aids and cochlear implants.
    Blamey PJ
    Trends Amplif; 2005; 9(2):77-98. PubMed ID: 16012705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between listening conditions and alternative amplification schemes for multiple memory hearing aids.
    Keidser G
    Ear Hear; 1995 Dec; 16(6):575-86. PubMed ID: 8747807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of multichannel digital signal processing on loudness comfort, sentence recognition, and sound quality.
    Mispagel KM; Valente M
    J Am Acad Audiol; 2006; 17(10):681-707. PubMed ID: 17153718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive dynamic range optimization for cochlear implants: a preliminary study.
    James CJ; Blamey PJ; Martin L; Swanson B; Just Y; Macfarlane D
    Ear Hear; 2002 Feb; 23(1 Suppl):49S-58S. PubMed ID: 11883767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between the first-fit settings of two multichannel digital signal-processing strategies: music quality ratings and speech-in-noise scores.
    Higgins P; Searchfield G; Coad G
    Am J Audiol; 2012 Jun; 21(1):13-21. PubMed ID: 22361320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Mobile Phone Speech Recognition by Personalized Amplification: Application in People with Normal Hearing and Mild-to-Moderate Hearing Loss.
    Kam AC; Sung JK; Lee T; Wong TK; van Hasselt A
    Ear Hear; 2017; 38(2):e85-e92. PubMed ID: 28225737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of spatial hearing to speech recognition in young people with normal hearing.
    Song PL; Li HJ; Wang NY
    Chin Med J (Engl); 2011 Dec; 124(24):4269-74. PubMed ID: 22340398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech recognition and comfort using hearing instruments with adaptive directional characteristics in asymmetric listening conditions.
    Mackenzie E; Lutman ME
    Ear Hear; 2005 Dec; 26(6):669-79. PubMed ID: 16378001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization.
    Ni A; Akbarzadeh S; Lobarinas E; Kehtarnavaz N
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise reduction results of an adaptive filtering technique for dual-microphone behind-the-ear hearing aids.
    Maj JB; Wouters J; Moonen M
    Ear Hear; 2004 Jun; 25(3):215-29. PubMed ID: 15179113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of speech recognition with adaptive digital and FM remote microphone hearing assistance technology by listeners who use hearing aids.
    Thibodeau L
    Am J Audiol; 2014 Jun; 23(2):201-10. PubMed ID: 24699929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a Bluetooth-implemented hearing aid on speech recognition performance: subjective and objective measurement.
    Kim MB; Chung WH; Choi J; Hong SH; Cho YS; Park G; Lee S
    Ann Otol Rhinol Laryngol; 2014 Jun; 123(6):395-401. PubMed ID: 24687593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech recognition performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing AIDS.
    Shanks JE; Wilson RH; Larson V; Williams D
    Ear Hear; 2002 Aug; 23(4):280-90. PubMed ID: 12195170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.