These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28846854)

  • 41. Resolution of discordant HIV-1 protease resistance rankings using molecular dynamics simulations.
    Wright DW; Coveney PV
    J Chem Inf Model; 2011 Oct; 51(10):2636-49. PubMed ID: 21902276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains.
    Tie Y; Boross PI; Wang YF; Gaddis L; Hussain AK; Leshchenko S; Ghosh AK; Louis JM; Harrison RW; Weber IT
    J Mol Biol; 2004 Apr; 338(2):341-52. PubMed ID: 15066436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs.
    Perryman AL; Lin JH; McCammon JA
    Protein Sci; 2004 Apr; 13(4):1108-23. PubMed ID: 15044738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural Basis of Why Nelfinavir-Resistant D30N Mutant of HIV-1 Protease Remains Susceptible to Saquinavir.
    Prashar V; Bihani SC; Ferrer JL; Hosur MV
    Chem Biol Drug Des; 2015 Sep; 86(3):302-8. PubMed ID: 25487655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HIV protease: enzyme function and drug resistance.
    Gulnik S; Erickson JW; Xie D
    Vitam Horm; 2000; 58():213-56. PubMed ID: 10668400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor.
    Bäckbro K; Löwgren S; Osterlund K; Atepo J; Unge T; Hultén J; Bonham NM; Schaal W; Karlén A; Hallberg A
    J Med Chem; 1997 Mar; 40(6):898-902. PubMed ID: 9083478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enamino-oxindole HIV protease inhibitors.
    Eissenstat M; Guerassina T; Gulnik S; Afonina E; Silva AM; Ludtke D; Yokoe H; Yu B; Erickson J
    Bioorg Med Chem Lett; 2012 Aug; 22(15):5078-83. PubMed ID: 22749283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance.
    Laco GS
    Biochimie; 2015 Nov; 118():90-103. PubMed ID: 26300060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope.
    Ozen A; Haliloğlu T; Schiffer CA
    J Mol Biol; 2011 Jul; 410(4):726-44. PubMed ID: 21762811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subtype polymorphisms among HIV-1 protease variants confer altered flap conformations and flexibility.
    Kear JL; Blackburn ME; Veloro AM; Dunn BM; Fanucci GE
    J Am Chem Soc; 2009 Oct; 131(41):14650-1. PubMed ID: 19788299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic characterization of the critical step in HIV-1 protease maturation.
    Sadiq SK; Noé F; De Fabritiis G
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20449-54. PubMed ID: 23184967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.
    Nalam MN; Ali A; Altman MD; Reddy GS; Chellappan S; Kairys V; Ozen A; Cao H; Gilson MK; Tidor B; Rana TM; Schiffer CA
    J Virol; 2010 May; 84(10):5368-78. PubMed ID: 20237088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.