These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28846897)

  • 1. Muscle synergies underlying sit-to-stand tasks in elderly people and their relationship with kinetic characteristics.
    Hanawa H; Kubota K; Kokubun T; Marumo T; Hoshi F; Kobayashi A; Kanemura N
    J Electromyogr Kinesiol; 2017 Dec; 37():15-20. PubMed ID: 28846897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts.
    Torres-Oviedo G; Ting LH
    J Neurophysiol; 2010 Jun; 103(6):3084-98. PubMed ID: 20393070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture-dependent neuromuscular contributions to three-dimensional isometric shoulder torque generation.
    Leonardis JM; Alkayyali AA; Lipps DB
    J Neurophysiol; 2020 Apr; 123(4):1526-1535. PubMed ID: 32101487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related modifications of muscle synergies during daily-living tasks: A scoping review.
    Dussault-Picard C; Havashinezhadian S; Turpin NA; Moissenet F; Turcot K; Cherni Y
    Clin Biomech (Bristol); 2024 Mar; 113():106207. PubMed ID: 38367481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.
    Steele KM; Tresch MC; Perreault EJ
    J Neurophysiol; 2015 Apr; 113(7):2102-13. PubMed ID: 25589591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sit to stand in elderly fallers vs non-fallers: new insights from force platform and electromyography data.
    Chorin F; Cornu C; Beaune B; Frère J; Rahmani A
    Aging Clin Exp Res; 2016 Oct; 28(5):871-9. PubMed ID: 26563286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations.
    Safavynia SA; Ting LH
    J Neurophysiol; 2012 Jan; 107(1):159-77. PubMed ID: 21957219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses.
    Wang Y; Asaka T; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2006 Oct; 174(4):679-93. PubMed ID: 16710681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle synergies for multidirectional isometric force generation during maintenance of upright standing posture.
    Monte A; Benamati A; Pavan A; d'Avella A; Bertucco M
    Exp Brain Res; 2024 Aug; 242(8):1881-1902. PubMed ID: 38874594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual and Vestibular Inputs Affect Muscle Synergies Responsible for Body Extension and Stabilization in Sit-to-Stand Motion.
    Yoshida K; An Q; Yozu A; Chiba R; Takakusaki K; Yamakawa H; Tamura Y; Yamashita A; Asama H
    Front Neurosci; 2018; 12():1042. PubMed ID: 30697144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-muscle synergies in elderly individuals: preparation to a step made under the self-paced and reaction time instructions.
    Wang Y; Asaka T; Watanabe K
    Exp Brain Res; 2013 May; 226(4):463-72. PubMed ID: 23571498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Jan; 109(1):31-45. PubMed ID: 23100133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support torques during simulated sit-to-stand movements.
    Gillette JC; Stevermer CA; Raina S; Derrick TR
    Biomed Sci Instrum; 2005; 41():7-12. PubMed ID: 15850074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Features of Muscle Synergies in Sit-to-Stand Motion Reflect the Motor Impairment of Post-Stroke Patients.
    Yang N; An Q; Kogami H; Yamakawa H; Tamura Y; Takahashi K; Kinomoto M; Yamasaki H; Itkonen M; Shibata-Alnajjar F; Shimoda S; Hattori N; Fujii T; Otomune H; Miyai I; Yamashita A; Asama H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2118-2127. PubMed ID: 31494552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Describing force patterns: a method for classifying sit-to-stand movement in elderly people.
    Chang CS; Leung CY; Liou JJ
    Percept Mot Skills; 2013 Feb; 116(1):163-74. PubMed ID: 23829143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions.
    Wang Y; Zatsiorsky VM; Latash ML
    Clin Neurophysiol; 2006 Jan; 117(1):41-56. PubMed ID: 16364687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clarification of muscle synergy structure during standing-up motion of healthy young, elderly and post-stroke patients.
    Yang N; An Q; Yamakawa H; Tamura Y; Yamashita A; Takahashi K; Kinomoto M; Yamasaki H; Itkonen M; Alnajjar FS; Shimoda S; Asama H; Hattori N; Miyai I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():19-24. PubMed ID: 28813787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistency of muscle synergies during pedaling across different mechanical constraints.
    Hug F; Turpin NA; Couturier A; Dorel S
    J Neurophysiol; 2011 Jul; 106(1):91-103. PubMed ID: 21490282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility in joint coordination remains unaffected by force and balance demands in young and old adults during simple sit-to-stand tasks.
    Greve C; Hortobágyi T; Bongers RM
    Eur J Appl Physiol; 2019 Feb; 119(2):419-428. PubMed ID: 30474739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-muscle coordination during a challenging stance.
    Yang WC; Cheng CH; Wang HK; Lin KH; Hsu WL
    Eur J Appl Physiol; 2015 Sep; 115(9):1959-66. PubMed ID: 25850541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.