BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 28847269)

  • 1. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers.
    Lee OS; Stupp SI; Schatz GC
    J Am Chem Soc; 2011 Mar; 133(10):3677-83. PubMed ID: 21341770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles.
    Fu IW; Nguyen HD
    Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Nguyen HD
    Langmuir; 2015; 31(1):315-24. PubMed ID: 25488898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces.
    Liao HS; Lin J; Liu Y; Huang P; Jin A; Chen X
    Nanoscale; 2016 Aug; 8(31):14814-20. PubMed ID: 27447093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks.
    Jun HW; Paramonov SE; Dong H; Forraz N; McGuckin C; Hartgerink JD
    J Biomater Sci Polym Ed; 2008; 19(5):665-76. PubMed ID: 18419944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.
    Deshmukh SA; Solomon LA; Kamath G; Fry HC; Sankaranarayanan SK
    Nat Commun; 2016 Aug; 7():12367. PubMed ID: 27554944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays.
    Yu T; Lee OS; Schatz GC
    J Phys Chem A; 2014 Sep; 118(37):8553-62. PubMed ID: 24735017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions.
    Yu Z; Erbas A; Tantakitti F; Palmer LC; Jackman JA; Olvera de la Cruz M; Cho NJ; Stupp SI
    J Am Chem Soc; 2017 Jun; 139(23):7823-7830. PubMed ID: 28571316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity.
    Beter M; Kara HK; Topal AE; Dana A; Tekinay AB; Guler MO
    Mol Pharm; 2017 Nov; 14(11):3660-3668. PubMed ID: 29020766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Langmuir; 2014 Jul; 30(26):7745-54. PubMed ID: 24915982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.
    Han SH; Lee MK; Lim YB
    Biomacromolecules; 2013 May; 14(5):1594-9. PubMed ID: 23550841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.
    Iscen A; Schatz GC
    J Phys Chem B; 2019 Aug; 123(32):7006-7013. PubMed ID: 31337221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding.
    Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR
    Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels.
    Cinar G; Ozdemir A; Hamsici S; Gunay G; Dana A; Tekinay AB; Guler MO
    Biomater Sci; 2016 Dec; 5(1):67-76. PubMed ID: 27819087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells.
    Berns EJ; Álvarez Z; Goldberger JE; Boekhoven J; Kessler JA; Kuhn HG; Stupp SI
    Acta Biomater; 2016 Jun; 37():50-8. PubMed ID: 27063496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.