BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28847429)

  • 1. Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit.
    Müller-Maatsch J; Sprenger J; Hempel J; Kreiser F; Carle R; Schweiggert RM
    Food Res Int; 2017 Sep; 99(Pt 2):928-935. PubMed ID: 28847429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato.
    Schweiggert RM; Mezger D; Schimpf F; Steingass CB; Carle R
    Food Chem; 2012 Dec; 135(4):2736-42. PubMed ID: 22980866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study.
    Schweiggert RM; Kopec RE; Villalobos-Gutierrez MG; Högel J; Quesada S; Esquivel P; Schwartz SJ; Carle R
    Br J Nutr; 2014 Feb; 111(3):490-8. PubMed ID: 23931131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene.
    Failla ML; Chitchumroonchokchai C; Ishida BK
    J Nutr; 2008 Mar; 138(3):482-6. PubMed ID: 18287353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative metabolites of lycopene and γ-carotene in gac (Momordica cochinchinensis).
    Maoka T; Yamano Y; Wada A; Etho T; Terada Y; Tokuda H; Nishino H
    J Agric Food Chem; 2015 Feb; 63(5):1622-30. PubMed ID: 25633727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit.
    Ishida BK; Turner C; Chapman MH; McKeon TA
    J Agric Food Chem; 2004 Jan; 52(2):274-9. PubMed ID: 14733508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion.
    Phan MAT; Bucknall MP; Arcot J
    Food Chem; 2019 Nov; 298():125040. PubMed ID: 31261008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.
    Hyun TK; Rim Y; Jang HJ; Kim CH; Park J; Kumar R; Lee S; Kim BC; Bhak J; Nguyen-Quoc B; Kim SW; Lee SY; Kim JY
    Plant Mol Biol; 2012 Jul; 79(4-5):413-27. PubMed ID: 22580955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of carotenoids in carrot: an underground story comes to light.
    Rodriguez-Concepcion M; Stange C
    Arch Biochem Biophys; 2013 Nov; 539(2):110-6. PubMed ID: 23876238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated milk β-carotene and lycopene after carrot and tomato paste supplementation.
    Haftel L; Berkovich Z; Reifen R
    Nutrition; 2015 Mar; 31(3):443-5. PubMed ID: 25701332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of spray-dried Gac aril extract and estimated shelf life of β-carotene and lycopene.
    Thumthanaruk B; Laohakunjit N; Chism GW
    PeerJ; 2021; 9():e11134. PubMed ID: 33828923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid Biosynthesis in Daucus carota.
    Simpson K; Cerda A; Stange C
    Subcell Biochem; 2016; 79():199-217. PubMed ID: 27485223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure homogenization increases the in vitro bioaccessibility of α- and β-carotene in carrot emulsions but not of lycopene in tomato emulsions.
    Svelander CA; Lopez-Sanchez P; Pudney PD; Schumm S; Alminger MA
    J Food Sci; 2011; 76(9):H215-25. PubMed ID: 22416706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of processing methods and oral mastication on the carotenoid bioaccessibility of restructured carrot chips.
    Yi J; Zhao Y; Bi J; Hou C; Peng J; Guo Y
    J Sci Food Agric; 2020 Oct; 100(13):4858-4869. PubMed ID: 32478412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid pigments in GAC fruit (Momordica cochinchinensis SPRENG).
    Aoki H; Kieu NT; Kuze N; Tomisaka K; Van Chuyen N
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2479-82. PubMed ID: 12506992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits.
    Hempel J; Amrehn E; Quesada S; Esquivel P; Jiménez VM; Heller A; Carle R; Schweiggert RM
    Planta; 2014 Nov; 240(5):1037-50. PubMed ID: 25023631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.).
    Tran XT; Parks SE; Roach PD; Golding JB; Nguyen MH
    Food Sci Nutr; 2016 Mar; 4(2):305-14. PubMed ID: 27004120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel.
    Chuyen HV; Roach PD; Golding JB; Parks SE; Nguyen MH
    J Sci Food Agric; 2017 Mar; 97(5):1656-1662. PubMed ID: 27435184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.
    Apel W; Bock R
    Plant Physiol; 2009 Sep; 151(1):59-66. PubMed ID: 19587100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.
    Palmero P; Lemmens L; Ribas-Agustí A; Sosa C; Met K; de Dieu Umutoni J; Hendrickx M; Van Loey A
    Food Chem; 2013 Dec; 141(3):2036-43. PubMed ID: 23870925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.