BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28847715)

  • 1. The role of enteric neurons in the development and progression of colorectal cancer.
    Rademakers G; Vaes N; Schonkeren S; Koch A; Sharkey KA; Melotte V
    Biochim Biophys Acta Rev Cancer; 2017 Dec; 1868(2):420-434. PubMed ID: 28847715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.
    Natale G; Ryskalin L; Busceti CL; Biagioni F; Fornai F
    Arch Ital Biol; 2017 Sep; 155(3):118-130. PubMed ID: 29220864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2.
    Vaes N; Schonkeren SL; Rademakers G; Holland AM; Koch A; Gijbels MJ; Keulers TG; de Wit M; Moonen L; Van der Meer JRM; van den Boezem E; Wolfs TGAM; Threadgill DW; Demmers J; Fijneman RJA; Jimenez CR; Vanden Berghe P; Smits KM; Rouschop KMA; Boesmans W; Hofstra RMW; Melotte V
    EMBO Rep; 2021 Jun; 22(6):e51913. PubMed ID: 33890711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorectal Cancer Invasion and Atrophy of the Enteric Nervous System: Potential Feedback and Impact on Cancer Progression.
    Godlewski J; Kmiec Z
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emergence of neural activity and its role in the development of the enteric nervous system.
    Hao MM; Bornstein JC; Vanden Berghe P; Lomax AE; Young HM; Foong JP
    Dev Biol; 2013 Oct; 382(1):365-74. PubMed ID: 23261929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System.
    Obata Y; Pachnis V
    Gastroenterology; 2016 Nov; 151(5):836-844. PubMed ID: 27521479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NDRG4, an early detection marker for colorectal cancer, is specifically expressed in enteric neurons.
    Vaes N; Lentjes MHFM; Gijbels MJ; Rademakers G; Daenen KL; Boesmans W; Wouters KAD; Geuzens A; Qu X; Steinbusch HPJ; Rutten BPF; Baldwin SH; Sharkey KA; Hofstra RMW; van Engeland M; Vanden Berghe P; Melotte V
    Neurogastroenterol Motil; 2017 Sep; 29(9):. PubMed ID: 28524415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Emerging Role of Nerves and Glia in Colorectal Cancer.
    Schonkeren SL; Thijssen MS; Vaes N; Boesmans W; Melotte V
    Cancers (Basel); 2021 Jan; 13(1):. PubMed ID: 33466373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in ontogeny of the enteric nervous system.
    Burns AJ; Thapar N
    Neurogastroenterol Motil; 2006 Oct; 18(10):876-87. PubMed ID: 16961690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enteric neuroplasticity evoked by inflammation.
    Vasina V; Barbara G; Talamonti L; Stanghellini V; Corinaldesi R; Tonini M; De Ponti F; De Giorgio R
    Auton Neurosci; 2006 Jun; 126-127():264-72. PubMed ID: 16624634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic manipulation of ENS - The brain in the gut.
    Wang W
    Life Sci; 2018 Jan; 192():18-25. PubMed ID: 29155296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system.
    Goldstein AM; Brewer KC; Doyle AM; Nagy N; Roberts DJ
    Mech Dev; 2005 Jun; 122(6):821-33. PubMed ID: 15905074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the enteric nervous system: bringing together cells, signals and genes.
    Burns AJ; Pachnis V
    Neurogastroenterol Motil; 2009 Feb; 21(2):100-2. PubMed ID: 19215587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short communication: Tryptic β-casein hydrolysate modulates enteric nervous system development in primary culture.
    Cossais F; Clawin-Rädecker I; Lorenzen PC; Klempt M
    J Dairy Sci; 2017 May; 100(5):3396-3403. PubMed ID: 28259395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic regulation of enteric nervous system development in zebrafish.
    Uribe RA
    Biochem Soc Trans; 2024 Feb; 52(1):177-190. PubMed ID: 38174765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity.
    Ekblad E; Bauer AJ
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():123-8. PubMed ID: 15066017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Modulation of the Development and Physiology of the Enteric Nervous System.
    Joly A; Leulier F; De Vadder F
    Trends Microbiol; 2021 Aug; 29(8):686-699. PubMed ID: 33309188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.
    Trautmann SM; Sharkey KA
    Int Rev Neurobiol; 2015; 125():85-126. PubMed ID: 26638765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal Development and Onset of Electrical Activity in the Human Enteric Nervous System.
    McCann CJ; Alves MM; Brosens E; Natarajan D; Perin S; Chapman C; Hofstra RM; Burns AJ; Thapar N
    Gastroenterology; 2019 Apr; 156(5):1483-1495.e6. PubMed ID: 30610864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment.
    Roy-Carson S; Natukunda K; Chou HC; Pal N; Farris C; Schneider SQ; Kuhlman JA
    BMC Genomics; 2017 Apr; 18(1):290. PubMed ID: 28403821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.