BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

810 related articles for article (PubMed ID: 28847921)

  • 61. Effects of noncovalent and covalent FAD binding on the redox and catalytic properties of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; McIntire WS
    Biochemistry; 2001 Feb; 40(7):2155-66. PubMed ID: 11329284
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein.
    Augustin P; Toplak M; Fuchs K; Gerstmann EC; Prassl R; Winkler A; Macheroux P
    J Biol Chem; 2018 Feb; 293(8):2829-2840. PubMed ID: 29301933
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Na(+)-translocating NADH:ubiquinone oxidoreductase from the marine bacterium Vibrio alginolyticus contains FAD but not FMN.
    Pfenninger-Li XD; Dimroth P
    FEBS Lett; 1995 Aug; 369(2-3):173-6. PubMed ID: 7649253
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quinoline oxidoreductase from Pseudomonas putida 86: an improved purification procedure and electron paramagnetic resonance spectroscopy.
    Tshisuaka B; Kappl R; Hüttermann J; Lingens F
    Biochemistry; 1993 Nov; 32(47):12928-34. PubMed ID: 8251516
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.
    Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification and properties of an inducible phenylacyl-CoA dehydrogenase in Pseudomonas putida KT2440.
    McMahon B; Mayhew SG
    FEMS Microbiol Lett; 2007 Aug; 273(1):50-7. PubMed ID: 17559393
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional dissection and site-directed mutagenesis of the structural gene for NAD(P)H-nitrite reductase in Neurospora crassa.
    Colandene JD; Garrett RH
    J Biol Chem; 1996 Sep; 271(39):24096-104. PubMed ID: 8798648
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.
    Surber MW; Maloy S
    Biochim Biophys Acta; 1999 Sep; 1421(1):5-18. PubMed ID: 10561467
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria.
    Robinson KM; Rothery RA; Weiner JH; Lemire BD
    Eur J Biochem; 1994 Jun; 222(3):983-90. PubMed ID: 8026509
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enzymes involved in l-lactate metabolism in humans.
    Adeva M; González-Lucán M; Seco M; Donapetry C
    Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.
    Belevich NP; Bertsova YV; Verkhovskaya ML; Baykov AA; Bogachev AV
    Biochim Biophys Acta; 2016 Feb; 1857(2):141-149. PubMed ID: 26655930
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 76. Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi.
    Bogachev AV; Bertsova YV; Barquera B; Verkhovsky MI
    Biochemistry; 2001 Jun; 40(24):7318-23. PubMed ID: 11401580
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
    Kato O; Youn JW; Stansen KC; Matsui D; Oikawa T; Wendisch VF
    BMC Microbiol; 2010 Dec; 10():321. PubMed ID: 21159175
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A structural model for FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: Ubiquinone oxidoreductase (complex I) assembly.
    Lemire BD
    Mitochondrion; 2015 May; 22():9-16. PubMed ID: 25765152
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase.
    Messner KR; Imlay JA
    J Biol Chem; 2002 Nov; 277(45):42563-71. PubMed ID: 12200425
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of the Escherichia coli fumarate reductase respiratory complex.
    Iverson TM; Luna-Chavez C; Cecchini G; Rees DC
    Science; 1999 Jun; 284(5422):1961-6. PubMed ID: 10373108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.