BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 28847951)

  • 1. Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity.
    Lampert TJ; Kamprad N; Edwards M; Borleis J; Watson AJ; Tarantola M; Devreotes PN
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7727-E7736. PubMed ID: 28847951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dictyostelium discoideum SecG interprets cAMP-mediated chemotactic signals to influence actin organization.
    Garcia R; Nguyen L; Brazill D
    Cytoskeleton (Hoboken); 2013 May; 70(5):269-80. PubMed ID: 23564751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.
    Batsios P; Ishikawa-Ankerhold HC; Roth H; Schleicher M; Wong CCL; Müller-Taubenberger A
    Mol Biol Cell; 2019 Feb; 30(4):453-466. PubMed ID: 30586322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paxillin and phospholipase D interact to regulate actin-based processes in Dictyostelium discoideum.
    Pribic J; Garcia R; Kong M; Brazill D
    Eukaryot Cell; 2011 Jul; 10(7):977-84. PubMed ID: 21531871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WasC, a WASP family protein, is involved in cell adhesion and migration through regulation of F-actin polymerization in Dictyostelium.
    Jeon P; Jeon TJ
    J Microbiol; 2020 Aug; 58(8):696-702. PubMed ID: 32524343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PakD, a putative p21-activated protein kinase in Dictyostelium discoideum, regulates actin.
    Garcia M; Ray S; Brown I; Irom J; Brazill D
    Eukaryot Cell; 2014 Jan; 13(1):119-26. PubMed ID: 24243792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells.
    Junemann A; Winterhoff M; Nordholz B; Rottner K; Eichinger L; Gräf R; Faix J
    Eur J Cell Biol; 2013; 92(6-7):201-12. PubMed ID: 23906540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell migration: regulation of cytoskeleton by Rap1 in Dictyostelium discoideum.
    Lee MR; Jeon TJ
    J Microbiol; 2012 Aug; 50(4):555-61. PubMed ID: 22923101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility.
    Pang TL; Chen FC; Weng YL; Liao HC; Yi YH; Ho CL; Lin CH; Chen MY
    J Cell Sci; 2010 Nov; 123(Pt 21):3745-55. PubMed ID: 20940261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assaying Rho GTPase-Dependent Processes in Dictyostelium discoideum.
    Marinović M; Xiong H; Rivero F; Weber I
    Methods Mol Biol; 2018; 1821():371-392. PubMed ID: 30062425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple system--substantial share: the use of Dictyostelium in cell biology and molecular medicine.
    Müller-Taubenberger A; Kortholt A; Eichinger L
    Eur J Cell Biol; 2013 Feb; 92(2):45-53. PubMed ID: 23200106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dictyostelium discoideum paxillin regulates actin-based processes.
    Duran MB; Rahman A; Colten M; Brazill D
    Protist; 2009 May; 160(2):221-32. PubMed ID: 19213599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingosine-1-phosphate plays a role in the suppression of lateral pseudopod formation during Dictyostelium discoideum cell migration and chemotaxis.
    Kumar A; Wessels D; Daniels KJ; Alexander H; Alexander S; Soll DR
    Cell Motil Cytoskeleton; 2004 Dec; 59(4):227-41. PubMed ID: 15476260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight from the maximal activation of the signal transduction excitable network in
    Edwards M; Cai H; Abubaker-Sharif B; Long Y; Lampert TJ; Devreotes PN
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3722-E3730. PubMed ID: 29602807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of development and chemotaxis in Dictyostelium discoideum mutants.
    Artemenko Y; Swaney KF; Devreotes PN
    Methods Mol Biol; 2011; 769():287-309. PubMed ID: 21748684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis.
    Wessels D; Lusche DF; Kuhl S; Heid P; Soll DR
    J Cell Sci; 2007 Aug; 120(Pt 15):2517-31. PubMed ID: 17623773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration.
    Kim LW
    BMB Rep; 2017 Sep; 50(9):437-444. PubMed ID: 28571594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling.
    Huber R; O'Day DH
    Cell Signal; 2011 Apr; 23(4):731-8. PubMed ID: 21195758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant Rac1B expression in Dictyostelium: effects on morphology, growth, endocytosis, development, and the actin cytoskeleton.
    Palmieri SJ; Nebl T; Pope RK; Seastone DJ; Lee E; Hinchcliffe EH; Sluder G; Knecht D; Cardelli J; Luna EJ
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):285-304. PubMed ID: 10962483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging actin cytoskeleton dynamics in Dictyostelium chemotaxis.
    Gerisch G
    Methods Mol Biol; 2009; 571():385-400. PubMed ID: 19763981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.