These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28848006)
1. Amino Acid Substitution in the Major Multidrug Efflux Transporter Protein AcrB Contributes to Low Susceptibility to Azithromycin in Haemophilus influenzae. Seyama S; Wajima T; Nakaminami H; Noguchi N Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28848006 [TBL] [Abstract][Full Text] [Related]
2. Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Dean CR; Narayan S; Daigle DM; Dzink-Fox JL; Puyang X; Bracken KR; Dean KE; Weidmann B; Yuan Z; Jain R; Ryder NS Antimicrob Agents Chemother; 2005 Aug; 49(8):3129-35. PubMed ID: 16048914 [TBL] [Abstract][Full Text] [Related]
3. Emergence and molecular characterization of Haemophilus influenzae harbouring mef(A). Seyama S; Wajima T; Suzuki M; Ushio M; Fujii T; Noguchi N J Antimicrob Chemother; 2017 Mar; 72(3):948-949. PubMed ID: 27999037 [No Abstract] [Full Text] [Related]
4. Carbapenem-Nonsusceptible Haemophilus influenzae with Penicillin-Binding Protein 3 Containing an Amino Acid Insertion. Kitaoka K; Kimura K; Kitanaka H; Banno H; Jin W; Wachino JI; Arakawa Y Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29784853 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children. Sunakawa K; Farrell DJ Ann Clin Microbiol Antimicrob; 2007 Aug; 6():7. PubMed ID: 17697316 [TBL] [Abstract][Full Text] [Related]
6. Membranome-based identification of amino acid substitution in Haemophilus influenzae multidrug efflux pump HmrM for reduced chloramphenicol susceptibility. Ho CH; Chen CW; Su PY Arch Microbiol; 2024 Jun; 206(7):298. PubMed ID: 38860999 [TBL] [Abstract][Full Text] [Related]
7. Prevalence of macrolide-non-susceptible isolates among β-lactamase-negative ampicillin-resistant Haemophilus influenzae in a tertiary care hospital in Japan. Wajima T; Seyama S; Nakamura Y; Kashima C; Nakaminami H; Ushio M; Fujii T; Noguchi N J Glob Antimicrob Resist; 2016 Sep; 6():22-26. PubMed ID: 27530834 [TBL] [Abstract][Full Text] [Related]
8. Activities of ceftobiprole, a novel broad-spectrum cephalosporin, against Haemophilus influenzae and Moraxella catarrhalis. Bogdanovich T; Clark C; Ednie L; Lin G; Smith K; Shapiro S; Appelbaum PC Antimicrob Agents Chemother; 2006 Jun; 50(6):2050-7. PubMed ID: 16723565 [TBL] [Abstract][Full Text] [Related]
9. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae. Kosowska K; Credito K; Pankuch GA; Hoellman D; Lin G; Clark C; Dewasse B; McGhee P; Jacobs MR; Appelbaum PC Antimicrob Agents Chemother; 2004 Nov; 48(11):4113-9. PubMed ID: 15504829 [TBL] [Abstract][Full Text] [Related]
10. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. Drago L; De Vecchi E; Nicola L; Colombo A; Gismondo MR J Antimicrob Chemother; 2004 Aug; 54(2):542-5. PubMed ID: 15215227 [TBL] [Abstract][Full Text] [Related]
12. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Peric M; Bozdogan B; Jacobs MR; Appelbaum PC Antimicrob Agents Chemother; 2003 Mar; 47(3):1017-22. PubMed ID: 12604536 [TBL] [Abstract][Full Text] [Related]
13. Haemophilus influenzae Isolated From Men With Acute Urethritis: Its Pathogenic Roles, Responses to Antimicrobial Chemotherapies, and Antimicrobial Susceptibilities. Ito S; Hatazaki K; Shimuta K; Kondo H; Mizutani K; Yasuda M; Nakane K; Tsuchiya T; Yokoi S; Nakano M; Ohinishi M; Deguchi T Sex Transm Dis; 2017 Apr; 44(4):205-210. PubMed ID: 28282645 [TBL] [Abstract][Full Text] [Related]
14. In vitro selection of resistance in Haemophilus influenzae by amoxicillin-clavulanate, cefpodoxime, cefprozil, azithromycin, and clarithromycin. Clark C; Bozdogan B; Peric M; Dewasse B; Jacobs MR; Appelbaum PC Antimicrob Agents Chemother; 2002 Sep; 46(9):2956-62. PubMed ID: 12183253 [TBL] [Abstract][Full Text] [Related]
15. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Bogdanovich T; Bozdogan B; Appelbaum PC Antimicrob Agents Chemother; 2006 Mar; 50(3):893-8. PubMed ID: 16495248 [TBL] [Abstract][Full Text] [Related]
16. A time-kill evaluation of clarithromycin and azithromycin against two extracellular pathogens and the development of resistance. Burgess DS; Hastings RW; Horan JL Ann Pharmacother; 1999 Dec; 33(12):1262-5. PubMed ID: 10630825 [TBL] [Abstract][Full Text] [Related]
18. Rise in Haemophilus influenzae With Reduced Quinolone Susceptibility and Development of a Simple Screening Method. Seyama S; Wajima T; Yanagisawa Y; Nakaminami H; Ushio M; Fujii T; Noguchi N Pediatr Infect Dis J; 2017 Mar; 36(3):263-266. PubMed ID: 27870809 [TBL] [Abstract][Full Text] [Related]
19. Earlier generation quinolones can be useful in identifying Haemophilus influenzae strains with low susceptibility to quinolone isolated from paediatric patients. Tanaka E; Wajima T; Noguchi N J Med Microbiol; 2019 Aug; 68(8):1227-1232. PubMed ID: 31215858 [TBL] [Abstract][Full Text] [Related]
20. Levofloxacin vs. azithromycin pharmacodynamic activity against S. pneumoniae and H. influenzae with decreased susceptibility to amoxicillin/clavulanic acid. Alou L; Aguilar L; Sevillano D; Giménez MJ; González N; Echeverría O; Torrico M; Martín JE; Valdés L; Prieto J J Chemother; 2007 Dec; 19(6):670-2. PubMed ID: 18230548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]