BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28848047)

  • 1. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions.
    Yao P; Sun H; Xu C; Chen T; Zou B; Jiang P; Du W
    J Biol Chem; 2017 Oct; 292(41):17113-17120. PubMed ID: 28848047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance.
    Sarfraz I; Rasul A; Hussain G; Shah MA; Zahoor AF; Asrar M; Selamoglu Z; Ji XY; Adem Ş; Sarker SD
    Biofactors; 2020 Jul; 46(4):550-562. PubMed ID: 32039535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repressing malic enzyme 1 redirects glucose metabolism, unbalances the redox state, and attenuates migratory and invasive abilities in nasopharyngeal carcinoma cell lines.
    Zheng FJ; Ye HB; Wu MS; Lian YF; Qian CN; Zeng YX
    Chin J Cancer; 2012 Nov; 31(11):519-31. PubMed ID: 23114090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Role of 6-Phosphogluconate Dehydrogenase in TAp73-Mediated Cancer Cell Proliferation.
    Qiao R; Wei M; Chen H; Zhang X; Zhang J; Gao L; Ma H; Wang Y; Li L
    Mol Cancer Res; 2023 Aug; 21(8):825-835. PubMed ID: 37071129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance.
    Liu R; Li W; Tao B; Wang X; Yang Z; Zhang Y; Wang C; Liu R; Gao H; Liang J; Yang W
    Nat Commun; 2019 Mar; 10(1):991. PubMed ID: 30824700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
    Lin R; Elf S; Shan C; Kang HB; Ji Q; Zhou L; Hitosugi T; Zhang L; Zhang S; Seo JH; Xie J; Tucker M; Gu TL; Sudderth J; Jiang L; Mitsche M; DeBerardinis RJ; Wu S; Li Y; Mao H; Chen PR; Wang D; Chen GZ; Hurwitz SJ; Lonial S; Arellano ML; Khoury HJ; Khuri FR; Lee BH; Lei Q; Brat DJ; Ye K; Boggon TJ; He C; Kang S; Fan J; Chen J
    Nat Cell Biol; 2015 Nov; 17(11):1484-96. PubMed ID: 26479318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions.
    Ying M; You D; Zhu X; Cai L; Zeng S; Hu X
    Redox Biol; 2021 Oct; 46():102065. PubMed ID: 34293554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism.
    Polat IH; Tarrado-Castellarnau M; Bharat R; Perarnau J; Benito A; Cortés R; Sabatier P; Cascante M
    Biology (Basel); 2021 Jan; 10(2):. PubMed ID: 33498665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 6PGD inhibition sensitizes hepatocellular carcinoma to chemotherapy via AMPK activation and metabolic reprogramming.
    Chen H; Wu D; Bao L; Yin T; Lei D; Yu J; Tong X
    Biomed Pharmacother; 2019 Mar; 111():1353-1358. PubMed ID: 30841449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death.
    Balsa E; Perry EA; Bennett CF; Jedrychowski M; Gygi SP; Doench JG; Puigserver P
    Nat Commun; 2020 Jun; 11(1):2714. PubMed ID: 32483148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NADPH-producing pathways (pentose phosphate and malic enzyme) are regulated by the NADPH consumption in rat mammary gland.
    Revilla E; Fabregat I; Santa María C; Machado A
    Biochem Int; 1987 May; 14(5):957-62. PubMed ID: 3454650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 6PGD Upregulation is Associated with Chemo- and Immuno-Resistance of Renal Cell Carcinoma via AMPK Signaling-Dependent NADPH-Mediated Metabolic Reprograming.
    Cao J; Sun X; Zhang X; Chen D
    Am J Med Sci; 2020 Sep; 360(3):279-286. PubMed ID: 32829780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal Structures of 6-Phosphogluconate Dehydrogenase from
    Yu H; Hong J; Seok J; Seu YB; Kim IK; Kim KJ
    J Microbiol Biotechnol; 2023 Oct; 33(10):1361-1369. PubMed ID: 37417004
    [No Abstract]   [Full Text] [Related]  

  • 16. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence.
    Sukhatme VP; Chan B
    FEBS Lett; 2012 Jul; 586(16):2389-95. PubMed ID: 22677172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes.
    Fabregat I; Revilla E; Machado A
    Mol Cell Biochem; 1987 Mar; 74(1):77-81. PubMed ID: 3587232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met.
    Chan B; VanderLaan PA; Sukhatme VP
    Biochem Biophys Res Commun; 2013 Sep; 439(2):247-51. PubMed ID: 23973484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of 6-phosphogluconate dehydrogenase generates CD8
    Daneshmandi S; Cassel T; Lin P; Higashi RM; Wulf GM; Boussiotis VA; Fan TW; Seth P
    Cell Rep; 2021 Mar; 34(10):108831. PubMed ID: 33691103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth.
    Shan C; Elf S; Ji Q; Kang HB; Zhou L; Hitosugi T; Jin L; Lin R; Zhang L; Seo JH; Xie J; Tucker M; Gu TL; Sudderth J; Jiang L; DeBerardinis RJ; Wu S; Li Y; Mao H; Chen PR; Wang D; Chen GZ; Lonial S; Arellano ML; Khoury HJ; Khuri FR; Lee BH; Brat DJ; Ye K; Boggon TJ; He C; Kang S; Fan J; Chen J
    Mol Cell; 2014 Aug; 55(4):552-65. PubMed ID: 25042803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.