BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28848433)

  • 1. Role of Proteases in Chronic Obstructive Pulmonary Disease.
    Pandey KC; De S; Mishra PK
    Front Pharmacol; 2017; 8():512. PubMed ID: 28848433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD.
    Mahor D; Kumari V; Vashisht K; Galgalekar R; Samarth RM; Mishra PK; Banerjee N; Dixit R; Saluja R; De S; Pandey KC
    BMC Pulm Med; 2020 Nov; 20(1):302. PubMed ID: 33198714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema.
    Abboud RT; Vimalanathan S
    Int J Tuberc Lung Dis; 2008 Apr; 12(4):361-7. PubMed ID: 18371259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Proteases involved in airway inflammation of COPD].
    Kasagi S; Seyama K; Fukuchi Y
    Nihon Rinsho; 2003 Dec; 61(12):2113-8. PubMed ID: 14674319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases.
    Kelly-Robinson GA; Reihill JA; Lundy FT; McGarvey LP; Lockhart JC; Litherland GJ; Thornbury KD; Martin SL
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between elastase and related proteases from human neutrophil for binding to alpha1-protease inhibitor.
    Korkmaz B; Poutrain P; Hazouard E; de Monte M; Attucci S; Gauthier FL
    Am J Respir Cell Mol Biol; 2005 Jun; 32(6):553-9. PubMed ID: 15764720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations.
    Mallia-Milanes B; Dufour A; Philp C; Solis N; Klein T; Fischer M; Bolton CE; Shapiro S; Overall CM; Johnson SR
    Am J Physiol Lung Cell Mol Physiol; 2018 Dec; 315(6):L1003-L1014. PubMed ID: 30284925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease-Antiprotease Imbalance in Bronchiectasis.
    Oriano M; Amati F; Gramegna A; De Soyza A; Mantero M; Sibila O; Chotirmall SH; Voza A; Marchisio P; Blasi F; Aliberti S
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases.
    Guarino C; Hamon Y; Croix C; Lamort AS; Dallet-Choisy S; Marchand-Adam S; Lesner A; Baranek T; Viaud-Massuard MC; Lauritzen C; Pedersen J; Heuzé-Vourc'h N; Si-Tahar M; Fıratlı E; Jenne DE; Gauthier F; Horwitz MS; Borregaard N; Korkmaz B
    Biochem Pharmacol; 2017 May; 131():52-67. PubMed ID: 28193451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Computed Tomography for the Evaluation of Lung Disease in Alpha-1 Antitrypsin Deficiency.
    Campos MA; Diaz AA
    Chest; 2018 May; 153(5):1240-1248. PubMed ID: 29175361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: implications for treatment.
    Demkow U; van Overveld FJ
    Eur J Med Res; 2010 Nov; 15 Suppl 2(Suppl 2):27-35. PubMed ID: 21147616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites.
    Cooley J; Takayama TK; Shapiro SD; Schechter NM; Remold-O'Donnell E
    Biochemistry; 2001 Dec; 40(51):15762-70. PubMed ID: 11747453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease.
    Chalmers JD; Kettritz R; Korkmaz B
    Front Immunol; 2023; 14():1239151. PubMed ID: 38162644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered protease and antiprotease balance during a COPD exacerbation contributes to mucus obstruction.
    Chillappagari S; Preuss J; Licht S; Müller C; Mahavadi P; Sarode G; Vogelmeier C; Guenther A; Nahrlich L; Rubin BK; Henke MO
    Respir Res; 2015 Jul; 16(1):85. PubMed ID: 26169056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance of apoptosis in chronic obstructive pulmonary disease.
    Park JW; Ryter SW; Choi AM
    COPD; 2007 Dec; 4(4):347-53. PubMed ID: 18027162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of protease-antiprotease homeostasis failure in chronic obstructive pulmonary disease (COPD).
    Cox LA
    Risk Anal; 2009 Apr; 29(4):576-86. PubMed ID: 19000077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteases and antiproteases.
    Stockley RA
    Novartis Found Symp; 2001; 234():189-99; discussion 199-204. PubMed ID: 11199096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments.
    Janciauskiene S; Welte T
    Ann Am Thorac Soc; 2016 Aug; 13 Suppl 4():S280-8. PubMed ID: 27564662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutrophil elastase inhibitors.
    Groutas WC; Dou D; Alliston KR
    Expert Opin Ther Pat; 2011 Mar; 21(3):339-54. PubMed ID: 21235378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase.
    Lucas SD; Costa E; Guedes RC; Moreira R
    Med Res Rev; 2013 Jun; 33 Suppl 1():E73-101. PubMed ID: 21681767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.