These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 28848950)
1. Particle accumulation and depletion in a microfluidic Marangoni flow. Orlishausen M; Butzhammer L; Schlotbohm D; Zapf D; Köhler W Soft Matter; 2017 Oct; 13(39):7053-7060. PubMed ID: 28848950 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy. Minetti C; Buffone C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013007. PubMed ID: 24580320 [TBL] [Abstract][Full Text] [Related]
3. Marangoni-driven instabilities of an evaporating liquid-vapor interface. Buffone C; Sefiane K; Easson W Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056302. PubMed ID: 16089644 [TBL] [Abstract][Full Text] [Related]
4. Capture of colloidal particles by a moving microfluidic bubble. Liascukiene I; Amselem G; Gunes DZ; Baroud CN Soft Matter; 2018 Feb; 14(6):992-1000. PubMed ID: 29340432 [TBL] [Abstract][Full Text] [Related]
5. Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet. Thokchom AK; Shin S Langmuir; 2019 Jul; 35(27):8977-8983. PubMed ID: 31188004 [TBL] [Abstract][Full Text] [Related]
6. Modulation of Marangoni convection in liquid films. Gambaryan-Roisman T Adv Colloid Interface Sci; 2015 Aug; 222():319-31. PubMed ID: 25769473 [TBL] [Abstract][Full Text] [Related]
7. Particle separation by a moving air-liquid interface in a microchannel. Wang F; Chon CH; Li D J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407 [TBL] [Abstract][Full Text] [Related]
8. Numerical investigation of bubble-induced Marangoni convection. O'Shaughnessy SM; Robinson AJ Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328 [TBL] [Abstract][Full Text] [Related]
9. Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Skowronek V; Rambach RW; Schmid L; Haase K; Franke T Anal Chem; 2013 Oct; 85(20):9955-9. PubMed ID: 24053589 [TBL] [Abstract][Full Text] [Related]
10. Evaporation Induced Spontaneous Micro-Vortexes through Engineering of the Marangoni Flow. Cai Z; Huang Z; Li Z; Su M; Zhao Z; Qin F; Zhang Z; Yang J; Song Y Angew Chem Int Ed Engl; 2020 Dec; 59(52):23684-23689. PubMed ID: 32926518 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M; Seki M Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous Marangoni Mixing of Miscible Liquids at a Liquid-Liquid-Air Contact Line. Kim H; Lee J; Kim TH; Kim HY Langmuir; 2015 Aug; 31(31):8726-31. PubMed ID: 26185919 [TBL] [Abstract][Full Text] [Related]
18. Deterministic Ratchet for Sub-micrometer (Bio)particle Separation. Kim D; Luo J; Arriaga EA; Ros A Anal Chem; 2018 Apr; 90(7):4370-4379. PubMed ID: 29506379 [TBL] [Abstract][Full Text] [Related]
20. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Kawamata T; Yamada M; Yasuda M; Seki M Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]