BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28849563)

  • 1. Mathematical Modeling of Avidity Distribution and Estimating General Binding Properties of Transcription Factors from Genome-Wide Binding Profiles.
    Kuznetsov VA
    Methods Mol Biol; 2017; 1613():193-276. PubMed ID: 28849563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative avidity, specificity, and sensitivity of transcription factor-DNA binding in genome-scale experiments.
    Kuznetsov VA
    Methods Mol Biol; 2009; 563():15-50. PubMed ID: 19597778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis and modeling of genome-scale avidity distribution of transcription factor binding sites in chip-pet experiments.
    Kuznetsov VA; Orlov YL; Wei CL; Ruan Y
    Genome Inform; 2007; 19():83-94. PubMed ID: 18546507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis.
    Rautio S; Lähdesmäki H
    BMC Bioinformatics; 2015 Dec; 16():413. PubMed ID: 26703974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding.
    Li J; Sagendorf JM; Chiu TP; Pasi M; Perez A; Rohs R
    Nucleic Acids Res; 2017 Dec; 45(22):12877-12887. PubMed ID: 29165643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins.
    Soltani M; Bokes P; Fox Z; Singh A
    Phys Biol; 2015 Aug; 12(5):055002. PubMed ID: 26267711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a better understanding of TF-DNA binding prediction from genomic features.
    Wang Z; Gong M; Liu Y; Xiong S; Wang M; Zhou J; Zhang Y
    Comput Biol Med; 2022 Oct; 149():105993. PubMed ID: 36057196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.