BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28849563)

  • 21. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling associated protein-DNA pattern discovery with unified scores.
    Chan TM; Lo LY; Sze-To HY; Leung KS; Xiao X; Wong MH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):696-707. PubMed ID: 24091402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles.
    Xuan Lin QX; Sian S; An O; Thieffry D; Jha S; Benoukraf T
    Nucleic Acids Res; 2019 Jan; 47(D1):D145-D154. PubMed ID: 30380113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positional distribution of human transcription factor binding sites.
    Koudritsky M; Domany E
    Nucleic Acids Res; 2008 Dec; 36(21):6795-805. PubMed ID: 18953043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.
    Gomes AL; Wang HH
    PLoS Comput Biol; 2016 Apr; 12(4):e1004891. PubMed ID: 27104615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell.
    Orlov Y; Xu H; Afonnikov D; Lim B; Heng JC; Yuan P; Chen M; Yan J; Clarke N; Orlova N; Huss M; Gunbin K; Podkolodnyy N; Ng HH
    J Integr Bioinform; 2012 Sep; 9(2):211. PubMed ID: 22987856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.
    Chen CC; Xiao S; Xie D; Cao X; Song CX; Wang T; He C; Zhong S
    PLoS Comput Biol; 2013; 9(12):e1003367. PubMed ID: 24339764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA Shape Features Improve Transcription Factor Binding Site Predictions In Vivo.
    Mathelier A; Xin B; Chiu TP; Yang L; Rohs R; Wasserman WW
    Cell Syst; 2016 Sep; 3(3):278-286.e4. PubMed ID: 27546793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles.
    Ng FSL; Ruau D; Wernisch L; Göttgens B
    Brief Bioinform; 2018 Jan; 19(1):162-173. PubMed ID: 27780826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovering approximate-associated sequence patterns for protein-DNA interactions.
    Chan TM; Wong KC; Lee KH; Wong MH; Lau CK; Tsui SK; Leung KS
    Bioinformatics; 2011 Feb; 27(4):471-8. PubMed ID: 21193520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing transcription factor motif drift from noisy decoy sequences.
    Reddy TE; DeLisi C; Shakhnovich BE
    Genome Inform; 2005; 16(1):59-67. PubMed ID: 16362907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of TF-Binding Site by Inclusion of Higher Order Position Dependencies.
    Zhou J; Lu Q; Xu R; Gui L; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1383-1393. PubMed ID: 30629513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.
    Narad P; Kumar A; Chakraborty A; Patni P; Sengupta A; Wadhwa G; Upadhyaya KC
    Interdiscip Sci; 2017 Sep; 9(3):378-391. PubMed ID: 27052996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subtypes of associated protein-DNA (Transcription Factor-Transcription Factor Binding Site) patterns.
    Chan TM; Leung KS; Lee KH; Wong MH; Lau TC; Tsui SK
    Nucleic Acids Res; 2012 Oct; 40(19):9392-403. PubMed ID: 22904079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.