These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28849566)

  • 1. Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways.
    Saidi R; Boudellioua I; Martin MJ; Solovyev V
    Methods Mol Biol; 2017; 1613():311-331. PubMed ID: 28849566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining.
    Boudellioua I; Saidi R; Hoehndorf R; Martin MJ; Solovyev V
    PLoS One; 2016; 11(7):e0158896. PubMed ID: 27390860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of text-mining for updating protein post-translational modification annotation in UniProtKB.
    Veuthey AL; Bridge A; Gobeill J; Ruch P; McEntyre JR; Bougueleret L; Xenarios I
    BMC Bioinformatics; 2013 Mar; 14():104. PubMed ID: 23517090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating protein-protein interactions and text mining for protein function prediction.
    Jaeger S; Gaudan S; Leser U; Rebholz-Schuhmann D
    BMC Bioinformatics; 2008 Jul; 9 Suppl 8(Suppl 8):S2. PubMed ID: 18673526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argo: enabling the development of bespoke workflows and services for disease annotation.
    Batista-Navarro R; Carter J; Ananiadou S
    Database (Oxford); 2016; 2016():. PubMed ID: 27189607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEIMAN 1.0: Post-translational modification Enrichment, Integration and Matching ANalysis.
    Nickchi P; Jafari M; Kalantari S
    Database (Oxford); 2015; 2015():bav037. PubMed ID: 25911152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CoMetGeNe: mining conserved neighborhood patterns in metabolic and genomic contexts.
    Zaharia A; Labedan B; Froidevaux C; Denise A
    BMC Bioinformatics; 2019 Jan; 20(1):19. PubMed ID: 30630411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Data Analysis Pipeline for High-Confidence Proteogenomics.
    Weisser H; Wright JC; Mudge JM; Gutenbrunner P; Choudhary JS
    J Proteome Res; 2016 Dec; 15(12):4686-4695. PubMed ID: 27786492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining sequence annotation databanks for association patterns.
    Artamonova II; Frishman G; Gelfand MS; Frishman D
    Bioinformatics; 2005 Nov; 21 Suppl 3():iii49-57. PubMed ID: 16306393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MinePhos: a literature mining system for protein phoshphorylation information extraction.
    Xu Y; Teng D; Lei Y
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):311-5. PubMed ID: 21576755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying negative rule mining to improve genome annotation.
    Artamonova II; Frishman G; Frishman D
    BMC Bioinformatics; 2007 Jul; 8():261. PubMed ID: 17659089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.
    Mohammed A; Guda C
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S16. PubMed ID: 26099921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic rule generation for protein annotation with the C4.5 data mining algorithm applied on SWISS-PROT.
    Kretschmann E; Fleischmann W; Apweiler R
    Bioinformatics; 2001 Oct; 17(10):920-6. PubMed ID: 11673236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning ensemble for function prediction of hypothetical proteins from pathogenic bacterial species.
    Mishra S; Rastogi YP; Jabin S; Kaur P; Amir M; Khatun S
    Comput Biol Chem; 2019 Dec; 83():107147. PubMed ID: 31698160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants.
    Rifaioglu AS; Doğan T; Saraç ÖS; Ersahin T; Saidi R; Atalay MV; Martin MJ; Cetin-Atalay R
    Proteins; 2018 Feb; 86(2):135-151. PubMed ID: 29098713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling central metabolism and energy biosynthesis across microbial life.
    Edirisinghe JN; Weisenhorn P; Conrad N; Xia F; Overbeek R; Stevens RL; Henry CS
    BMC Genomics; 2016 Aug; 17():568. PubMed ID: 27502787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot.
    Lima T; Auchincloss AH; Coudert E; Keller G; Michoud K; Rivoire C; Bulliard V; de Castro E; Lachaize C; Baratin D; Phan I; Bougueleret L; Bairoch A
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D471-8. PubMed ID: 18849571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups.
    Le Boulch M; Déhais P; Combes S; Pascal G
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31032842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases.
    Green ML; Karp PD
    BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative data-mining tools to link gene and function.
    El Yacoubi B; de Crécy-Lagard V
    Methods Mol Biol; 2014; 1101():43-66. PubMed ID: 24233777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.