BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28849614)

  • 1. Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis.
    Shi J; Dong J; Xue J; Wang H; Yang Z; Jiao Y; Xu L; Huang H
    Plant J; 2017 Nov; 92(3):469-480. PubMed ID: 28849614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning.
    Dong J; Huang H
    J Integr Plant Biol; 2018 Jun; 60(6):455-464. PubMed ID: 29405646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin depletion from leaf primordia contributes to organ patterning.
    Qi J; Wang Y; Yu T; Cunha A; Wu B; Vernoux T; Meyerowitz E; Jiao Y
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18769-74. PubMed ID: 25512543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar auxin transport modulates early leaf flattening.
    Wang Q; Marconi M; Guan C; Wabnik K; Jiao Y
    Proc Natl Acad Sci U S A; 2022 Dec; 119(50):e2215569119. PubMed ID: 36469773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.
    Wang W; Xu B; Wang H; Li J; Huang H; Xu L
    Plant Physiol; 2011 Dec; 157(4):1805-19. PubMed ID: 22003085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Role for Auxin in Triggering Lamina Outgrowth of Unifacial Leaves.
    Nukazuka A; Yamaguchi T; Tsukaya H
    Plant Physiol; 2021 Jun; 186(2):1013-1024. PubMed ID: 33620494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development.
    Yamaguchi T; Nukazuka A; Tsukaya H
    Plant Cell Physiol; 2012 Jul; 53(7):1180-94. PubMed ID: 22619472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin regulates the initiation and radial position of plant lateral organs.
    Reinhardt D; Mandel T; Kuhlemeier C
    Plant Cell; 2000 Apr; 12(4):507-18. PubMed ID: 10760240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato.
    Pulungan SI; Yano R; Okabe Y; Ichino T; Kojima M; Takebayashi Y; Sakakibara H; Ariizumi T; Ezura H
    Plant Cell Physiol; 2018 Jun; 59(6):1170-1186. PubMed ID: 29528453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.
    Guan C; Wu B; Yu T; Wang Q; Krogan NT; Liu X; Jiao Y
    Curr Biol; 2017 Oct; 27(19):2940-2950.e4. PubMed ID: 28943086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula.
    Zhou C; Han L; Zhao Y; Wang H; Nakashima J; Tong J; Xiao L; Wang ZY
    Plant J; 2019 Nov; 100(3):562-571. PubMed ID: 31350797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.
    Takahashi H; Iwakawa H; Ishibashi N; Kojima S; Matsumura Y; Prananingrum P; Iwasaki M; Takahashi A; Ikezaki M; Luo L; Kobayashi T; Machida Y; Machida C
    Plant Cell Physiol; 2013 Mar; 54(3):418-31. PubMed ID: 23396601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato.
    Naz AA; Raman S; Martinez CC; Sinha NR; Schmitz G; Theres K
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2401-6. PubMed ID: 23341595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input.
    Burian A; Paszkiewicz G; Nguyen KT; Meda S; RaczyƄska-Szajgin M; Timmermans MCP
    Nat Plants; 2022 Mar; 8(3):269-280. PubMed ID: 35318449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.
    Scanlon MJ
    Plant Physiol; 2003 Oct; 133(2):597-605. PubMed ID: 14500790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin patterns Solanum lycopersicum leaf morphogenesis.
    Koenig D; Bayer E; Kang J; Kuhlemeier C; Sinha N
    Development; 2009 Sep; 136(17):2997-3006. PubMed ID: 19666826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of auxin-triggered leaf initiation by tomato
    Capua Y; Eshed Y
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3246-3251. PubMed ID: 28270611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
    Candela H; Johnston R; Gerhold A; Foster T; Hake S
    Plant Cell; 2008 Aug; 20(8):2073-87. PubMed ID: 18757553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The auxin influx carrier is essential for correct leaf positioning.
    Stieger PA; Reinhardt D; Kuhlemeier C
    Plant J; 2002 Nov; 32(4):509-17. PubMed ID: 12445122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.