These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds. Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763 [TBL] [Abstract][Full Text] [Related]
4. Facile Synthesis of Quaternary Structurally Ordered L1 Wang S; Luo Q; Zhu Y; Tang S; Du Y ACS Omega; 2019 Oct; 4(18):17894-17902. PubMed ID: 31681899 [TBL] [Abstract][Full Text] [Related]
5. Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions. Zhu H; Cai Y; Wang F; Gao P; Cao J ACS Appl Mater Interfaces; 2018 Jul; 10(26):22156-22166. PubMed ID: 29882641 [TBL] [Abstract][Full Text] [Related]
6. Structural transformation of carbon-supported Pt₃Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Zou L; Li J; Yuan T; Zhou Y; Li X; Yang H Nanoscale; 2014 Sep; 6(18):10686-92. PubMed ID: 25092107 [TBL] [Abstract][Full Text] [Related]
7. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction. Arumugam B; Tamaki T; Yamaguchi T ACS Appl Mater Interfaces; 2015 Aug; 7(30):16311-21. PubMed ID: 26159178 [TBL] [Abstract][Full Text] [Related]
8. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts. Kim HY; Cho S; Sa YJ; Hwang SM; Park GG; Shin TJ; Jeong HY; Yim SD; Joo SH Small; 2016 Oct; 12(38):5347-5353. PubMed ID: 27515995 [TBL] [Abstract][Full Text] [Related]
9. Intermetallic PtCu Nanoframes as Efficient Oxygen Reduction Electrocatalysts. Kim HY; Kwon T; Ha Y; Jun M; Baik H; Jeong HY; Kim H; Lee K; Joo SH Nano Lett; 2020 Oct; 20(10):7413-7421. PubMed ID: 32924501 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin Co-N-C Layer Modified Pt-Co Intermetallic Nanoparticles Leading to a High-Performance Electrocatalyst toward Oxygen Reduction and Methanol Oxidation. Chen J; Dong J; Huo J; Li C; Du L; Cui Z; Liao S Small; 2023 Sep; 19(37):e2301337. PubMed ID: 37144456 [TBL] [Abstract][Full Text] [Related]
16. VO Deng Y; Zhang L; Zheng J; Dang D; Zhang J; Gu X; Yang X; Tan W; Wang L; Zeng L; Chen C; Wang T; Cui Z Small; 2024 Aug; 20(31):e2400381. PubMed ID: 38639308 [TBL] [Abstract][Full Text] [Related]
17. L1 Cheng N; Zhang L; Mi S; Jiang H; Hu Y; Jiang H; Li C ACS Appl Mater Interfaces; 2018 Nov; 10(44):38015-38023. PubMed ID: 30360067 [TBL] [Abstract][Full Text] [Related]
18. Direct Synthesis of Intermetallic Platinum-Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. Yoo TY; Yoo JM; Sinha AK; Bootharaju MS; Jung E; Lee HS; Lee BH; Kim J; Antink WH; Kim YM; Lee J; Lee E; Lee DW; Cho SP; Yoo SJ; Sung YE; Hyeon T J Am Chem Soc; 2020 Aug; 142(33):14190-14200. PubMed ID: 32787259 [TBL] [Abstract][Full Text] [Related]
19. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores. Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of L1 Guan J; Zhang J; Wang X; Zhang Z; Wang F Adv Mater; 2023 Feb; 35(6):e2207995. PubMed ID: 36417324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]