BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28849761)

  • 1. A novel role for
    Pechmann M; Benton MA; Kenny NJ; Posnien N; Roth S
    Elife; 2017 Aug; 6():. PubMed ID: 28849761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signalling is involved in cumulus migration in the common house spider Parasteatoda tepidariorum.
    Wang R; Leite DJ; Karadas L; Schiffer PH; Pechmann M
    Dev Biol; 2023 Feb; 494():35-45. PubMed ID: 36470448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields.
    Oda H; Iwasaki-Yokozawa S; Usui T; Akiyama-Oda Y
    Dev Genes Evol; 2020 Mar; 230(2):49-63. PubMed ID: 30972574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression patterns of a twist-related gene in embryos of the spider Achaearanea tepidariorum reveal divergent aspects of mesoderm development in the fly and spider.
    Yamazaki K; Akiyama-Oda Y; Oda H
    Zoolog Sci; 2005 Feb; 22(2):177-85. PubMed ID: 15738638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum.
    Schomburg C; Turetzek N; Prpic NM
    Dev Genes Evol; 2020 Mar; 230(2):105-120. PubMed ID: 32036446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells.
    Akiyama-Oda Y; Oda H
    Development; 2003 May; 130(9):1735-47. PubMed ID: 12642480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental expression of doublesex-related transcripts in the common house spider, Parasteatoda tepidariorum.
    Gruzin M; Mekheal M; Ruhlman K; Winkowski M; Petko J
    Gene Expr Patterns; 2020 Jan; 35():119101. PubMed ID: 32105761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth.
    Hemmi N; Akiyama-Oda Y; Fujimoto K; Oda H
    Dev Biol; 2018 May; 437(2):84-104. PubMed ID: 29551694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum.
    Schwager EE; Pechmann M; Feitosa NM; McGregor AP; Damen WG
    Curr Biol; 2009 Aug; 19(16):1333-40. PubMed ID: 19631543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular control of gut formation in the spider Parasteatoda tepidariorum.
    Feitosa NM; Pechmann M; Schwager EE; Tobias-Santos V; McGregor AP; Damen WGM; Nunes da Fonseca R
    Genesis; 2017 May; 55(5):. PubMed ID: 28432834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The forkhead box containing transcription factor FoxB is a potential component of dorsal-ventral body axis formation in the spider Parasteatoda tepidariorum.
    Heingård M; Janssen R
    Dev Genes Evol; 2020 Mar; 230(2):65-73. PubMed ID: 32034484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum.
    Schwager EE; Meng Y; Extavour CG
    Dev Biol; 2015 Jun; 402(2):276-90. PubMed ID: 25257304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.
    Königsmann T; Turetzek N; Pechmann M; Prpic NM
    Dev Genes Evol; 2017 Nov; 227(6):389-400. PubMed ID: 29116381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum.
    Schönauer A; Paese CL; Hilbrant M; Leite DJ; Schwager EE; Feitosa NM; Eibner C; Damen WG; McGregor AP
    Development; 2016 Jul; 143(13):2455-63. PubMed ID: 27287802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae).
    Pechmann M
    Dev Genes Evol; 2020 Mar; 230(2):75-94. PubMed ID: 32076811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. six3 acts upstream of foxQ2 in labrum and neural development in the spider Parasteatoda tepidariorum.
    Schacht MI; Schomburg C; Bucher G
    Dev Genes Evol; 2020 Mar; 230(2):95-104. PubMed ID: 32040712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The T-box genes H15 and optomotor-blind in the spiders Cupiennius salei, Tegenaria atrica and Achaearanea tepidariorum and the dorsoventral axis of arthropod appendages.
    Janssen R; Feitosa NM; Damen WG; Prpic NM
    Evol Dev; 2008; 10(2):143-54. PubMed ID: 18315808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of the germ-disc in spider embryos by a condensation-like mechanism.
    Pechmann M
    Front Zool; 2016; 13():35. PubMed ID: 27525029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea.
    Oda H; Akiyama-Oda Y
    Dev Growth Differ; 2008 May; 50(4):203-14. PubMed ID: 18366383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved role for arrow in posterior axis patterning across Arthropoda.
    Setton EVW; Sharma PP
    Dev Biol; 2021 Jul; 475():91-105. PubMed ID: 33607111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.