These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 2885004)
1. Effect of decarboxylase inhibitors on brain p-tyrosine levels. Dyck LE Biochem Pharmacol; 1987 Apr; 36(8):1373-6. PubMed ID: 2885004 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of aromatic L-amino acid decarboxylase and tyrosine aminotransferase by the monoamine oxidase inhibitor phenelzine. Dyck LE; Dewar KM J Neurochem; 1986 Jun; 46(6):1899-903. PubMed ID: 2871132 [TBL] [Abstract][Full Text] [Related]
3. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat. Treseder SA; Rose S; Summo L; Jenner P J Neural Transm (Vienna); 2003 Mar; 110(3):229-38. PubMed ID: 12658372 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of monoamine oxidase selectively in brain monoamine nerves using the bioprecursor (E)-beta-fluoromethylene-m-tyrosine (MDL 72394), a substrate for aromatic L-amino acid decarboxylase. Palfreyman MG; McDonald IA; Fozard JR; Mely Y; Sleight AJ; Zreika M; Wagner J; Bey P; Lewis PJ J Neurochem; 1985 Dec; 45(6):1850-60. PubMed ID: 3840523 [TBL] [Abstract][Full Text] [Related]
5. Monoamine receptor sensitivity changes following chronic administration of MDL 72394, a site-directed inhibitor of monoamine oxidase. Palfreyman MG; Mir AK; Kubina M; Middlemiss DN; Richards M; Tricklebank MD; Fozard JR Eur J Pharmacol; 1986 Oct; 130(1-2):73-89. PubMed ID: 3780861 [TBL] [Abstract][Full Text] [Related]
6. The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I2 imidazoline-preferring receptors. Alemany R; Olmos G; García-Sevilla JA Br J Pharmacol; 1995 Feb; 114(4):837-45. PubMed ID: 7773544 [TBL] [Abstract][Full Text] [Related]
7. Elevation of rat brain tyrosine levels by phenelzine is mediated by its active metabolite β-phenylethylidenehydrazine. Matveychuk D; Nunes E; Ullah N; Aldawsari FS; Velázquez-Martínez CA; Baker GB Prog Neuropsychopharmacol Biol Psychiatry; 2014 Aug; 53():67-73. PubMed ID: 24607770 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of aromatic L-amino acid decarboxylase under physiological conditions: optimization of 3-hydroxybenzylhydrazine concentration to prevent concurrent inhibition of monoamine oxidase. Hunter LW; Rorie DK; Tyce GM Biochem Pharmacol; 1993 Mar; 45(6):1363-6. PubMed ID: 8096696 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of aromatic amino acid decarboxylase and depletion of biogenic amines in brain of rats treated with alpha-monofluoromethyl p-tyrosine: similitudes and differences with the effects of alpha-monofluoromethyldopa. Jung MJ; Hornsperger JM; Gerhart F; Wagner J Biochem Pharmacol; 1984 Jan; 33(2):327-30. PubMed ID: 6704155 [No Abstract] [Full Text] [Related]
10. The acute effect of the bioprecursor of the selective brain MAO-A inhibitor, MDL 72392, on rat pineal melatonin biosynthesis. Oxenkrug GF; Requintina PJ; Yuwiler A; Palfreyman MG J Neural Transm Suppl; 1994; 41():377-9. PubMed ID: 7931254 [TBL] [Abstract][Full Text] [Related]
11. Rat brain concentrations of 5-hydroxytryptamine following acute and chronic administration of MAO-inhibiting antidepressants. Baker GB; LeGatt DF; Coutts RT; Dewhurst WG Prog Neuropsychopharmacol Biol Psychiatry; 1984; 8(4-6):653-6. PubMed ID: 6531436 [TBL] [Abstract][Full Text] [Related]
12. Interactions of levodopa with inhibitors of monoamine oxidase and L-aromatic amino acid decarboxylase. Teychenne PF; Calne DB; Lewis PJ; Findley LJ Clin Pharmacol Ther; 1975 Sep; 18(3):273-7. PubMed ID: 1164817 [TBL] [Abstract][Full Text] [Related]
13. Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration. Green AR; Youdim MB Br J Pharmacol; 1975 Nov; 55(3):415-22. PubMed ID: 1203627 [TBL] [Abstract][Full Text] [Related]
14. Monoamine oxidase inhibitory properties of milacemide in rats. Truong DD; Diamond B; Pezzoli G; Mena MA; Fahn S Life Sci; 1989; 44(15):1059-66. PubMed ID: 2784529 [TBL] [Abstract][Full Text] [Related]
15. Phenelzine causes an increase in brain ornithine that is prevented by prior monoamine oxidase inhibition. MacKenzie EM; Grant SL; Baker GB; Wood PL Neurochem Res; 2008 Mar; 33(3):430-6. PubMed ID: 17768678 [TBL] [Abstract][Full Text] [Related]
17. Relative activity of some inhibitors of mono-amine oxidase in potentiating the action of tryptamine in vitro and in vivo. MAXWELL DR; GRAY WR; TAYLOR EM Br J Pharmacol Chemother; 1961 Dec; 17(3):310-20. PubMed ID: 14471627 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors. Christmas AJ; Coulson CJ; Maxwell DR; Riddell D Br J Pharmacol; 1972 Jul; 45(3):490-503. PubMed ID: 5072232 [TBL] [Abstract][Full Text] [Related]
19. Relationship between extracellular 5-hydroxytryptamine and behaviour following monoamine oxidase inhibition and L-tryptophan. Sleight AJ; Marsden CA; Martin KF; Palfreyman MG Br J Pharmacol; 1988 Feb; 93(2):303-10. PubMed ID: 2451963 [TBL] [Abstract][Full Text] [Related]
20. Characteristics and specificity of phenelzine and benserazide as inhibitors of benzylamine oxidase and monoamine oxidase. Andree TH; Clarke DE Biochem Pharmacol; 1982 Mar; 31(5):825-30. PubMed ID: 7082351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]