These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2885027)

  • 1. Identification of methionine-110 as the residue covalently modified in the electrophilic inactivation of D-amino-acid oxidase by O-(2,4-dinitrophenyl) hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1987 Mar; 26(6):1717-22. PubMed ID: 2885027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophilic amination of a single methionine residue located at the active site of D-amino acid oxidase by O-(2,4-dinitrophenyl)hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1986 Sep; 25(19):5602-8. PubMed ID: 2877687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of D-amino acid oxidase. Amino acid sequence of the tryptic peptides containing tyrosine and lysine residues modified by fluorodinitrobenzene.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1982 Feb; 257(4):1937-44. PubMed ID: 6120171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation of the active center histidine 217 in D-amino acid oxidase by methyl-p-nitrobenzenesulfonate.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1984 May; 259(9):5585-90. PubMed ID: 6143757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modifications of D-amino acid oxidase. Evidence for active site histidine, tyrosine, and arginine residues.
    Nishino T; Massey V; Williams CH
    J Biol Chem; 1980 Apr; 255(8):3610-6. PubMed ID: 6102567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, characterization and partial sequence of cyanogen bromide fragments and thiol peptides from pig kidney D-amino-acid oxidase.
    Ronchi S; Minchiotti L; Curti B; Zapponi MC; Bridgen J
    Biochim Biophys Acta; 1976 Apr; 427(2):634-43. PubMed ID: 5133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis.
    Ramón F; de la Mata I; Iannacone S; Pilar Castillón M; Acebal C
    J Biochem; 1995 Nov; 118(5):911-6. PubMed ID: 8749306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the histidine residue in D-amino acid oxidase that is covalently modified during inactivation by 5-dimethylaminonaphthalene-1-sulfonyl chloride.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1983 Jan; 258(1):497-502. PubMed ID: 6129252
    [No Abstract]   [Full Text] [Related]  

  • 9. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the inhibition of hog kidney D-amino acid oxidase by short-, medium- and long-chain fatty acids.
    Brachet P; Carreira S; Puigserver A
    Biochem Int; 1990 Dec; 22(5):837-42. PubMed ID: 1983068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of lysyl residues of Rhodotorula gracilis D-amino acid oxidase.
    Gadda G; Beretta GL; Pilone MS
    Biochem Mol Biol Int; 1994 Aug; 33(5):947-55. PubMed ID: 7987263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the functional importance of Cys298 in D-amino acid oxidase from Trigonopsis variabilis.
    Schräder T; Andreesen JR
    Eur J Biochem; 1993 Dec; 218(2):735-44. PubMed ID: 7903639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis.
    Gadda G; Beretta GL; Pilone MS
    FEBS Lett; 1995 Apr; 363(3):307-10. PubMed ID: 7737423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vinylglycine and proparglyglycine: complementary suicide substrates for L-amino acid oxidase and D-amino acid oxidase.
    Marcotte P; Walsh C
    Biochemistry; 1976 Jul; 15(14):3070-6. PubMed ID: 8082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural interpretation of the binding of 9-azidoacridine to D-amino acid oxidase.
    Nicholson BH; Batra SP
    Biochem J; 1988 Nov; 255(3):907-12. PubMed ID: 2905598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Completion of the amino acid sequence of the alpha 1 chain from type I calf skin collagen. Amino acid sequence of alpha 1(I)B8.
    Glanville RW; Breitkreutz D; Meitinger M; Fietzek PP
    Biochem J; 1983 Oct; 215(1):183-9. PubMed ID: 6354180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of pig kidney diamine oxidase with ethoxyformic anhydride and rose bengal: evidence for essential histidyl residue at the active site.
    Shah MA; Ali R
    Biochem Mol Biol Int; 1994 May; 33(1):9-19. PubMed ID: 8081216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.
    Ullah AH; Cummins BJ; Dischinger HC
    Biochem Biophys Res Commun; 1991 Jul; 178(1):45-53. PubMed ID: 1648914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of carp muscle parvalbumin fragments A (residues 1 leads to 75) and B (residues 76 leads to 108).
    Coffee CJ; Solano C
    Biochim Biophys Acta; 1976 Nov; 453(1):67-80. PubMed ID: 999890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.