These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28850306)

  • 1. Differences between motion capture and video analysis systems in calculating knee angles in elite-standard race walking.
    Hanley B; Tucker CB; Bissas A
    J Sports Sci; 2018 Jun; 36(11):1250-1255. PubMed ID: 28850306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efficacy of a video-based marker-less tracking system for gait analysis.
    Ong A; Harris IS; Hamill J
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1089-1095. PubMed ID: 28569549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic characteristics of elite men's 50 km race walking.
    Hanley B; Bissas A; Drake A
    Eur J Sport Sci; 2013; 13(3):272-9. PubMed ID: 23679143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional kinematics of an unconstrained ankle arthroplasty: a preliminary in vivo videofluoroscopic feasibility study.
    List R; Foresti M; Gerber H; Goldhahn J; Rippstein P; Stüssi E
    Foot Ankle Int; 2012 Oct; 33(10):883-92. PubMed ID: 23050714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automating Video-Based Two-Dimensional Motion Analysis in Sport? Implications for Gait Event Detection, Pose Estimation, and Performance Parameter Analysis.
    Mundt M; Colyer S; Wade L; Needham L; Evans M; Millett E; Alderson J
    Scand J Med Sci Sports; 2024 Jul; 34(7):e14693. PubMed ID: 38984681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of stance phase knee joint angles and moments using two different surface marker representations of the proximal shank in walkers and runners.
    Petit DJ; Willson JD; Barrios JA
    J Appl Biomech; 2014 Feb; 30(1):173-8. PubMed ID: 24676525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint torque and mechanical energy flow in the support legs of skilled race walkers.
    Hoga K; Ae M; Enomoto Y; Yokozawa T; Fujii N
    Sports Biomech; 2006 Jul; 5(2):167-82. PubMed ID: 16939151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patellar tracking during the gait cycle.
    Abbas G; Diss C
    J Orthop Surg (Hong Kong); 2011 Dec; 19(3):288-91. PubMed ID: 22184156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior translation and rotational stability of anterior cruciate ligament-deficient knees during walking: speed and turning direction.
    Yim JH; Seon JK; Kim YK; Jung ST; Shin CS; Yang DH; Rhym IS; Song EK
    J Orthop Sci; 2015 Jan; 20(1):155-62. PubMed ID: 25395272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of lower limb work-energy patterns in world-class race walkers.
    Hanley B; Bissas A
    J Sports Sci; 2017 May; 35(10):960-966. PubMed ID: 27388971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic characteristics of elite men's and women's 20 km race walking and their variation during the race.
    Hanley B; Bissas A; Drake A
    Sports Biomech; 2011 Jun; 10(2):110-24. PubMed ID: 21834395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.
    Guan S; Gray HA; Keynejad F; Pandy MG
    IEEE Trans Med Imaging; 2016 Jan; 35(1):326-36. PubMed ID: 26316030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affordable gait analysis using augmented reality markers.
    Nagymáté G; Kiss RM
    PLoS One; 2019; 14(2):e0212319. PubMed ID: 30763399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of two-dimensional and three-dimensional systems for kinematic analysis of the sagittal motion of canine hind limbs during walking.
    Kim J; Rietdyk S; Breur GJ
    Am J Vet Res; 2008 Sep; 69(9):1116-22. PubMed ID: 18764680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of lower limb internal kinetics and electromyography in elite race walking.
    Hanley B; Bissas A
    J Sports Sci; 2013; 31(11):1222-32. PubMed ID: 23464365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.
    Kim HY; Kim KJ; Yang DS; Jeung SW; Choi HG; Choy WS
    Clin Orthop Surg; 2015 Sep; 7(3):303-9. PubMed ID: 26330951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Much Clinical and Functional Impairment do Children Treated With Knee Rotationplasty Experience in Adulthood?
    Benedetti MG; Okita Y; Recubini E; Mariani E; Leardini A; Manfrini M
    Clin Orthop Relat Res; 2016 Apr; 474(4):995-1004. PubMed ID: 26754115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.