These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28850306)

  • 21. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury.
    McLean SG; Walker K; Ford KR; Myer GD; Hewett TE; van den Bogert AJ
    Br J Sports Med; 2005 Jun; 39(6):355-62. PubMed ID: 15911607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does tester experience influence the reliability with which 3D gait kinematics are collected in healthy adults?
    Leigh RJ; Pohl MB; Ferber R
    Phys Ther Sport; 2014 May; 15(2):112-6. PubMed ID: 23988839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume.
    Bernardina GRD; Monnet T; Cerveri P; Silvatti AP
    PLoS One; 2019; 14(11):e0224182. PubMed ID: 31714919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.
    Zhang S; Clowers KG; Powell D
    Gait Posture; 2006 Dec; 24(4):487-92. PubMed ID: 16414263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of unilateral knee immobilization on lower extremity gait mechanics.
    Lage KJ; White SC; Yack HJ
    Med Sci Sports Exerc; 1995 Jan; 27(1):8-14. PubMed ID: 7898343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The knee adduction angle of the osteo-arthritic knee: a comparison of 3D supine, static and dynamic alignment.
    Duffell LD; Mushtaq J; Masjedi M; Cobb JP
    Knee; 2014 Dec; 21(6):1096-100. PubMed ID: 25260863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system.
    Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B
    Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects.
    Castelli A; Paolini G; Cereatti A; Della Croce U
    Comput Math Methods Med; 2015; 2015():186780. PubMed ID: 26064181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model.
    Cockcroft J; Louw Q; Baker R
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1497-504. PubMed ID: 26929983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of restricted vision and knee joint range of motion on gait properties during level walking and stair ascent and descent.
    Demura T; Demura SI
    J Mot Behav; 2011; 43(6):445-50. PubMed ID: 22017503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative kinematics of two walking frame gaits.
    Crosbie J
    J Orthop Sports Phys Ther; 1994 Oct; 20(4):186-92. PubMed ID: 7987378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
    Moro M; Marchesi G; Hesse F; Odone F; Casadio M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of knee and ankle angles during walking using thigh and shank angles.
    Eslamy M; Schilling AF
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34492652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait analysis post anterior cruciate ligament reconstruction: knee osteoarthritis perspective.
    Hall M; Stevermer CA; Gillette JC
    Gait Posture; 2012 May; 36(1):56-60. PubMed ID: 22310303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patellar instability and quadriceps avoidance affect walking knee moments.
    Clark DA; Simpson DL; Eldridge J; Colborne GR
    Knee; 2016 Jan; 23(1):78-84. PubMed ID: 26746039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.