BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28850541)

  • 1. Targeted degradomics in protein terminomics and protease substrate discovery.
    Savickas S; Auf dem Keller U
    Biol Chem; 2017 Dec; 399(1):47-54. PubMed ID: 28850541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial degradomics: Precision tools to unveil proteolytic processes in biological systems.
    Savickas S; Kastl P; Auf dem Keller U
    Biochim Biophys Acta Proteins Proteom; 2020 Jun; 1868(6):140392. PubMed ID: 32087360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New strategies to identify protease substrates.
    Canbay V; Auf dem Keller U
    Curr Opin Chem Biol; 2021 Feb; 60():89-96. PubMed ID: 33220627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradomics in Biomarker Discovery.
    Grozdanić M; Vidmar R; Vizovišek M; Fonović M
    Proteomics Clin Appl; 2019 Nov; 13(6):e1800138. PubMed ID: 31291060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward and reverse degradomics defines the proteolytic landscape of human knee osteoarthritic cartilage and the role of the serine protease HtrA1.
    Bhutada S; Li L; Willard B; Muschler G; Piuzzi N; Apte SS
    Osteoarthritis Cartilage; 2022 Aug; 30(8):1091-1102. PubMed ID: 35339693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.
    Tholey A; Becker A
    Biochim Biophys Acta Mol Cell Res; 2017 Nov; 1864(11 Pt B):2191-2199. PubMed ID: 28711385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional proteomics: is the technology ready to study clinical cohorts?
    Lange PF; Schilling O; Huesgen PF
    Expert Rev Proteomics; 2023; 20(12):309-318. PubMed ID: 37869791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics approaches for the identification of protease substrates during virus infection.
    Martiáñez-Vendrell X; Kikkert M
    Adv Virus Res; 2021; 109():135-161. PubMed ID: 33934826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contemporary positional proteomics strategies to study protein processing.
    Plasman K; Van Damme P; Gevaert K
    Curr Opin Chem Biol; 2013 Feb; 17(1):66-72. PubMed ID: 23291282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Terminomics Strategies for Protease Substrates Profiling.
    Mintoo M; Chakravarty A; Tilvawala R
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MS-driven protease substrate degradomics.
    Impens F; Colaert N; Helsens K; Plasman K; Van Damme P; Vandekerckhove J; Gevaert K
    Proteomics; 2010 Mar; 10(6):1284-96. PubMed ID: 20058249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling protease activities by dynamic proteomics workflows.
    Klingler D; Hardt M
    Proteomics; 2012 Feb; 12(4-5):587-96. PubMed ID: 22246865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring proteolytic processing events by quantitative mass spectrometry.
    Coradin M; Karch KR; Garcia BA
    Expert Rev Proteomics; 2017 May; 14(5):409-418. PubMed ID: 28395554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.
    Wiita AP; Seaman JE; Wells JA
    Methods Enzymol; 2014; 544():327-58. PubMed ID: 24974296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.