These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 28850541)
1. Targeted degradomics in protein terminomics and protease substrate discovery. Savickas S; Auf dem Keller U Biol Chem; 2017 Dec; 399(1):47-54. PubMed ID: 28850541 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial degradomics: Precision tools to unveil proteolytic processes in biological systems. Savickas S; Kastl P; Auf dem Keller U Biochim Biophys Acta Proteins Proteom; 2020 Jun; 1868(6):140392. PubMed ID: 32087360 [TBL] [Abstract][Full Text] [Related]
3. New strategies to identify protease substrates. Canbay V; Auf dem Keller U Curr Opin Chem Biol; 2021 Feb; 60():89-96. PubMed ID: 33220627 [TBL] [Abstract][Full Text] [Related]
4. Quantitative proteomics in plant protease substrate identification. Demir F; Niedermaier S; Villamor JG; Huesgen PF New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421 [TBL] [Abstract][Full Text] [Related]
5. Degradomics in Biomarker Discovery. Grozdanić M; Vidmar R; Vizovišek M; Fonović M Proteomics Clin Appl; 2019 Nov; 13(6):e1800138. PubMed ID: 31291060 [TBL] [Abstract][Full Text] [Related]
6. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Huesgen PF; Overall CM Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699 [TBL] [Abstract][Full Text] [Related]
7. Current trends and challenges in proteomic identification of protease substrates. Vizovišek M; Vidmar R; Fonović M; Turk B Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758 [TBL] [Abstract][Full Text] [Related]
8. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Eckhard U; Marino G; Butler GS; Overall CM Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287 [TBL] [Abstract][Full Text] [Related]
9. Forward and reverse degradomics defines the proteolytic landscape of human knee osteoarthritic cartilage and the role of the serine protease HtrA1. Bhutada S; Li L; Willard B; Muschler G; Piuzzi N; Apte SS Osteoarthritis Cartilage; 2022 Aug; 30(8):1091-1102. PubMed ID: 35339693 [TBL] [Abstract][Full Text] [Related]
10. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. Tholey A; Becker A Biochim Biophys Acta Mol Cell Res; 2017 Nov; 1864(11 Pt B):2191-2199. PubMed ID: 28711385 [TBL] [Abstract][Full Text] [Related]
11. Protease proteomics: revealing protease in vivo functions using systems biology approaches. Doucet A; Overall CM Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712 [TBL] [Abstract][Full Text] [Related]
12. Positional proteomics: is the technology ready to study clinical cohorts? Lange PF; Schilling O; Huesgen PF Expert Rev Proteomics; 2023; 20(12):309-318. PubMed ID: 37869791 [TBL] [Abstract][Full Text] [Related]
13. Proteomics approaches for the identification of protease substrates during virus infection. Martiáñez-Vendrell X; Kikkert M Adv Virus Res; 2021; 109():135-161. PubMed ID: 33934826 [TBL] [Abstract][Full Text] [Related]
14. Contemporary positional proteomics strategies to study protein processing. Plasman K; Van Damme P; Gevaert K Curr Opin Chem Biol; 2013 Feb; 17(1):66-72. PubMed ID: 23291282 [TBL] [Abstract][Full Text] [Related]
15. N-Terminomics Strategies for Protease Substrates Profiling. Mintoo M; Chakravarty A; Tilvawala R Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849 [TBL] [Abstract][Full Text] [Related]
16. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products. Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364 [TBL] [Abstract][Full Text] [Related]